簡易檢索 / 詳目顯示

研究生: 林瓘洆
Guan-Cheng Lin
論文名稱: 提升具有次波長金屬光柵之偏極化白光LED的光學品質
Improve the Optical Characteristics of Polarized White Light Emitting Diodes with a Nano-wire Grid Polarizer
指導教授: 蘇忠傑
Jung-chieh Su
口試委員: 葉秉慧
Pinghui-sophia Yeh
林保宏
Pao-hung Lin
楊恆隆
Heng-long Yang
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 185
中文關鍵詞: 偏極化白光LED次波長金屬光柵粒子散射表面散射偏極隨機化機制
外文關鍵詞: Polarized white LED, Nano-wire grid polarizer, Particle scattering, Surface Scattering, Polarizing randomization mechanism
相關次數: 點閱:288下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 含有次波長金屬光柵的偏極化白光LED擁有許多優點,如高消光比的偏極性、低色差和質輕密集等優點,因此在照明領域上可有效降低眩光的產生且有取代LCD面板之下偏光片的淺力。但因為次波長金屬光柵中的鋁金屬有吸收可見光之現象,侷限其穿透率之大小,影響了偏極化白光LED之發光效率,因此在不改變光柵結構的情況下,提升光柵的穿透率為本實驗之研究目標。
    為了尋找提升光柵穿透率之方法,本研究量測不同表面微結構之螢光片的偏極散射光型,發現藉由粒子散射和螢光粉波長轉換效應可有效提升螢光層的偏極隨機化機制,而偏極隨機化機制有助於增加次波長金屬光柵的穿透率。
    根據螢光片的量測結果,將摻雜氧化鋅奈米粉粒的之奈米膠添加於偏極化白光LED的螢光層上,增加螢光層的粒子散射和螢光粉的波長轉換效應來提升其偏極隨機化機制,有效提升偏極化白光LED之次波長金屬光柵的穿透率,在添加奈米膠濃度為11%時,最高提升原本的4.58%,但其發光效率在添加奈米膠濃度為7%時最高,提升了原本的4.98%,而此時的穿透率增加了原本的2.92%,由此可知添加奈米膠確實可增加螢光層的偏極隨機化機制來提升次波長金屬光柵之穿透率,增強了偏極化白光LED的發光效率,使具有次波長金屬光柵的偏極化白光LED更具競爭力。


    The PWLED(Polarized white light-emitting-diode) which packaged with NWGP(Nano-wire grid polarizer) can generate polarized light with high ER(Extinction ratio), improving the problem of the glare in interior lighting and automobile lighting, and having better stability of color performance at different viewing angles and currents than traditional WLED. Because of NWGP’s high ER and the absorption-loss of the metal material, the transmittance of NWGP is limited.
    In experiment, we realized that scattering and down-conversion of phosphors dominate the PRM(Polarization randomized mechanism) instead of micro-structural surfaces by measuring the PSDF(Polarized scattering distribution function) of phosphor layer in different structural surfaces. So we decide to add the nano-particle resin to the PWLED package for increasing the transmittance of NWGP by promoting the PRP.
    In terms of same CCT, the transmittance and luminous efficiency of the PWLED which add the nano-particle resin are 0.76% and 0.21 lm/W more than the PWLED which only has phosphor resin. In terms of different CCT, transmittance gain increases with the increase of concentration of nano-particle resin, but the luminous efficiency gain has a maximum in 7% of nano-particle resin is 1.0498, and the transmittance gain is 1.0292 .
    No matter the CCT of PWLED is changed after adding the nano-particles resin or not, the transmittance of NWGP, luminous efficiency and stability of color performance at different viewing angles and currents will all increase. We can only adjust the concentration of nano-particles resin to get different CCT of PWLED which supply the needs of different applications, enhance the competitiveness of PWLED.

    第一章 導論...........................................1 1.1 前言.............................................1 1.2 文獻回顧..........................................2 1.2.1 偏極化白光LED...................................2 1.2.2 粒子散射理論與散射光之偏振特性......................6 1.2.3 偏振光用於表面結構與散射介質的量測..................11 1.3 論文架構.........................................19 第二章 研究目的與方法..................................20 2.1 研究目的.........................................20 2.2 量測架構與儀器....................................21 2.2.1掃描式電子顯微鏡..................................21 2.2.2光型特性量測.....................................21 2.2.2.1 螢光片基本特性量測.............................22 2.2.2.2 菲涅耳(Fresnel)反射量測........................23 2.2.2.3 正向與逆向偏極散射光型量測.......................24 2.2.2.4 LED光場量測..................................25 2.2.2.5 LED偏極性量測................................26 2.2.3 積分球與I-V電性量測..............................27 2.3 螢光層之材料特性與製作..............................29 2.3.1 螢光層之材料特性.................................30 2.3.2 螢光片之製作....................................32 2.3.3 螢光片之表面結構與散射能力.........................34 2.4 白光發光二極體封裝..................................37 2.4.1 封裝流程........................................37 2.4.2 矽膠層之厚度優化.................................38 第三章 螢光層特性量測...................................40 3.1 前言.............................................40 3.2 平面螢光層........................................42 3.2.1 放射光譜與波長、偏陣之相依性.......................42 3.2.2 TM/TE Fresnel 反射量測.........................47 3.2.3 偏極散射光型....................................53 3.2.4 整理...........................................63 3.3 表面粗化螢光片.....................................66 3.3.1 偏極散射光型.....................................66 3.3.2 整理............................................79 3.4 比較與討論.........................................80 3.4.1 不同結構對偏極散射光型之影響........................80 3.4.2 偏極隨機化機制之分析...............................82 第四張 偏極隨機化白光LED之效能優化.........................89 4.1 偏極化白光LED封裝結構................................89 4.2傳統白光LED結合次波長金屬光柵...........................91 4.2.1 螢光膠之配方優化...................................91 4.2.2 不同視角特性量測...................................94 4.2.3 不同電流特性量測...................................98 4.3 奈米膠添加白光LED結合次波長金屬光柵.....................104 4.3.1 奈米粉之去極化效應驗證..............................104 4.3.2 不同奈米膠濃度對WLED/PWLED之影響....................107 4.3.2.1 不同奈米膠濃度之WLED/PWLED的光學品質...............107 4.3.2.2 不同視角特性量測..................................111 4.3.2.3 不同電流特性量測..................................118 4.3.3 有無奈米膠在同色溫下對WLED/PWLED之影響................123 4.3.3.1 同色溫下螢光膠之配方優化............................123 4.3.3.2 不同視角特性量測..................................126 4.3.3.3 不同電流特性量測..................................133 4.4 比較與討論...........................................138 4.4.1 奈米膠的濃度對WLED/PWLED之影響.......................138 4.4.2 奈米膠的有無對WLED/PWLED之影響.......................139 第五章 結論與未來展望......................................140 5.1 結論.................................................140 5.2 未來發展方向..........................................143 參考文獻.................................................144 附錄A....................................................147 附錄B....................................................152 附錄C....................................................171

    [1]梁紅山, “光污染对人体的危害及预防,” 勞動醫學, 18(4), (2001).
    [2]胡玲, 陈红 李, 盈盈, 牟珈乐, “ 玻璃幕墙有害反射光评价标准探讨,” 硅谷, 22, 86-87,
    (2008).
    [3]K. Ouderkirk and M. F. Weber, “Phosphor Based Light Sources Having a
    Reflective Polarizer,” US Patent 7091661, (2006).
    [4]P. C. Lin, C. H. Chen, H. P. Yang and H. Y. Lin, “LED Polarization Conversion
    and Angular Shaping Module for LCD Backlighting,” International Optical
    Design Conference, (2010) .
    [5]C. Y. Huang and C. W. Chu, “Polarized light emitting device,” US Patent
    7495315, (2007) .
    [6]林東懋, "具有次波長金屬光柵之偏極化白光發光二極體," in 電子工程系: 國立台灣科技大學, (
    2011)。
    [7]X. J. Yu and H. S. Kwok, "Optical Wire-Grid Polarizers at Oblique Angles of
    Incidence." Journal of Applied Physics, 93, 4407-4412, (2003).
    [8]X. J. Yu and H. S. Kwok, "Application of Wire-Grid Polarizers to Projection
    Displays." Appl. Opt., 42, 6335-6341, (2003).
    [9]M. Kerker, “The scattering of light and other electromagnetic radiation,”
    Academic, New York, (1969).
    [10]H.C. van de Hulst., “Light scattering by small particles,” John Wiley &
    Sons, New York, (1957) .
    [11]Bohren C.F. and Huffman D.R., “Absorption and scattering of light by small
    particles,” John Wiley & Sons, New York, (1983).
    [12]A. J. Cox, Alan J. DeWeerd, and Jennifer Linden, “An experiment to measure
    Mie and Rayleigh total scattering cross sections,” American Journal of
    Physics, 70(6), 620, (2002).
    [13]S. M. Scholz, R. Vacassy, J. Dutta, H. Hofmann, and M. Akinc, “Mie
    scattering effects from monodispersed ZnS nanospheres ,” Appl. Phys., 83,
    7860, (1998).
    [14]Z. Liu, S. Liu, K. Wang, and X. Luo, “Measurement and numerical studies of
    optical properties of YAG:Ce phosphor for white light-emitting diode
    packaging,” Applied Optics, 49(2), 247-257, (2010).
    [15]R. Hu and X. Luo, “A Model for Calculating the Bidirectional Scattering
    Properties of Phosphor Layer in White Light-Emitting Diodes,” Lightwave
    Technology, 30(21), 3376-3380, (2012).
    [16]C. Sommer , F. Reil, J. R. Krenn, P. Hartmann , P. Pachler , H. Hoschopf ,
    F. P. Wenzl, “The Impact of Light Scattering on the Radiant Flux of
    Phosphor-Converted High Power White Light-Emitting Diodes,” Lightwave
    Technology, 29(15), 2285-2291, (2011).
    [17]Shunsuke FUJITA, Yoshio UMAYAHARA, Setsuhisa TANABE, “Influence of light
    scattering on luminous efficacy in Ce:YAG glass-ceramic phosphor,” Journal
    of the Ceramic Society of Japan, 118(1374), 128-131, (2010).
    [18]C. Sommer , F. Reil, J. R. Krenn, P. Hartmann , P. Pachler , H. Hoschopf ,
    F. P. Wenzl, “The Effect of the Phosphor Particle Sizes on the Angular
    Homogeneity of Phosphor-Converted High-Power White LED Light Sources,”
    Selected Topics in Quantum Electronics, 15(4), (2009).
    [19]S. C. Huang, J. K. Wu, W. J. Hsu,H. H. Chang, H. Y. Hung, C. L. Lin, H. Y.
    Su, N. Bagkar, W. C. Ke, H. T. Kuo, R. S. Liu, “Particle Size Effect on the
    Packaging Performance of YAG:Ce Phosphors in White LEDs,” International
    Journal of Applied Ceramic Technology, 6(4), 465-469, (2009)
    [20]N. T. Tran, J. P. You, and F. G. Shi, “Effect of Phosphor Particle Size on
    Luminous Efficacy of Phosphor-Converted White LED,” Journal of lightwave
    technology, 27(22), (2009).
    [21]Yun Shuai, Nguyen T. Tran, Jiun Pyng You, and Frank G. Shi, “Phosphor Size
    Dependence of Lumen Efficiency and Spatial CCT Uniformity,” Electronic
    Components and Technology Conference (ECTC), (2012).
    [22]Z. Yang, S. Gao, P. Wang, “Polarization of reflected light by earth
    objects,” Acta Optica Sinica, 25(2), 241-245, (2005).
    [23]Y. Zhao, Y. Jiang , X. Lu, “The Num erical Analysis on the Concentration of
    the Scattering M edium and the Ratio of the Impuri ty with the Method of
    Polarization Degre ,” Acta Optica Sinica, 27(12), (2007).
    [24]F. W. Wei, Q. Wang, S. Wu, Y. Liu, S. Wu, D. Liu, Z. Wang, Dongfang, “Study
    of Polarized Bidirectional Reflectance Distribution Function Model for
    Painted Surfaces,” Acta Optica Sinica, 28(2), 290-294, (2008).
    [25]Thomas A. Germer and Clara C. Asmail, “Polarization of out-of-plane
    scattering from microrough silicon,” Optics letters, 22(17), (1997).
    [26]Lipiin Sung, George W. Mulholland,a and Thomas A. Germera, “Polarization of
    light scattered by spheres on a dielectric film,” Part of the SPIE
    Conference on Scattering and Surface Roughness, (1999).
    [27]Thomas A. Germer and Clara C. Asmail, “Polarization of light scattered by
    microrough surfaces and subsurface defects,” Journal of the Optical Society
    of America A: Optics, Image Science, and Vision, 16(6), 1326-1332, (1999).
    [28]Y. Q. PAN, Z. S. Wu, L. X. Hang, “Polarized light scattering of particle
    above a surface and surface microroughness,” Acta Optica Sinica, 35(4),
    (2009).
    [29]Shao H., He Y. H., Li W., et al. “Polarization-degree imaging contrast in
    turbid media: a quantitative study,” Applied Optics, 2006, 45(18):4491-4496
    [30]Vanitha Sankaran, Joseph T. Walsh, Jr., Duncan J. Maitland, “Comparative
    study of polarized light propagation in biologic tissues,” Journal of
    Biomedical Optics, 7, 300-306, (2002).
    [31]Stokes G G. “Composition and resolution of streams of polarized light from
    multiful sources,” Transactions Cambridge Philosophical Society, 9, 399-416,
    (1859).
    [32]S. Y. Lu, R. A. Chipman, “Mueller matrices and the degree of polarization,”
    Optics Communications , 146(1-6), 11-14, (1998).
    [33]X. Li, J. C. Ranasinghesagara, and G. Yao, “Polarization-sensitive
    reflectance imaging in skeletal muscle,” Optical Express, 16(13), 9927-9935,
    (2008).
    [34]X. P. Cao, P. Sun, “Characteristics of Degree of Polarization of
    Backscattering Light in Scattering Medium at Different Wavelengths,” Acta
    Photonica Sinica, 41(5), (2012).
    [35]C. C. Lin, R. S. Liu,Y. S. Tang, and S. F. Hu, “Full-Color and Thermally
    Stable KSrPO 4 :Ln (Ln = Eu, Tb, Sm) Phosphors for White-Light-Emitting
    Diodes,” Journal of The Electrochemical Society, 155(9), 248-251, (2008).
    [36]Lakshmanan, Arunachalam Kumar, R Satheesh Sivakumar, V Thomas, Preema C
    Jose, M T, “Symthesis, photoluminescence and thermal quenching of YAG:Ce
    phosphor for white light emitting diodes,” IJPAP, 49(5), (2011).

    QR CODE