簡易檢索 / 詳目顯示

研究生: 蔡其泰
Chi-Tai Tsai
論文名稱: 偏極化白光LED穿透率提升之研究
Study on the Enhancement of Transmittance of Polarized White Light Emitting Diodes
指導教授: 蘇忠傑
Jung-Chieh Su
口試委員: 林保宏
Pao-hung Lin
李志堅
Chih-Chien Lee
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 97
中文關鍵詞: 偏極化白光 LED次波長金屬光柵穿透率偏極隨機化機制
外文關鍵詞: Polarized white LED, Nano wire grid polarizer, Transmittance, Polarization randomized mechanism
相關次數: 點閱:389下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 具有次波長金屬光柵的偏極化白光LED,除了光源有偏極性以外,高消光比和降低眩光的能力也是其優點,甚至有取代LCD面板之下偏光片的潛力。但是光柵材料為鋁金屬對於入射光有損耗的現象,導致穿透率有所限制,更加影響了偏極化白光LED的發光效率,所以在不改變光柵結構的情況下,提升偏極化白光LED的穿透率為本文目標。
    本文針對光柵材料和白光LED封裝結構進行探討,光柵部分藉由使用氧化鋁介質材料改善鋁金屬材料對入射光的損耗;封裝結構部分藉由加入氧化鋅奈米粒子矽膠層提升偏極隨機化機制。
    根據實驗的結果,在相同色溫下,使用類介質次波長金屬光柵對於偏極化白光LED穿透率提升的效果不佳,穿透率和發光效率分別下降0.27%和0.38 lm/W;加入奈米粒子矽膠層於偏極化白光LED,增加了螢光膠層的粒子散射和螢光粉波長轉換效應來提升偏極隨機化機制,使得偏極化白光LED的穿透率和發光效率分別增加0.76%和0.2 lm/W。而加入不同奈米粒子濃度時,穿透率提升量在濃度11%最佳,可提升原本的4.58%;發光效率提升量在濃度7%最佳,可提升原本的4.98%。
    因此,對於偏極化白光LED穿透率的提升,改變白光LED封裝結構的方法效果較顯著,且兩種方法皆會提升偏極化白光LED的顏色均勻性。


    Polarized white light emitting diode(PWLED) which is packaged by nano wire grid polarizer(NWGP) can generate polarized light with high extinction ratio(ER) and improve the problem of the glare in interior lighting and automobile lighting. However, the disadvantage is that the absorption-loss of the NWGP’s Al material makes the transmittance of PWLED be limited.
    In order to improving this problem, we have proposed two methods. One of them was that we used dielectric material to decrease the absorption-loss of the NWGP, the other one was to add the nano-particle resin to the PWLED package to increase the polarization randomized mechanism(PRM).
    At the same correlated color temperature(CCT), the transmittance and luminous efficiency of the PWLED which was packaged by meta-medium-nano wire grid polarizer(M-NWGP) were 0.27% and 0.38 lm/W less than the PWLED which was packaged by NWGP. Obviously, to change the materials of NWGP enhanced PWLED’s transmittance unwell. However, the transmittance and luminous efficiency of the PWLED which added the nano-particle resin were 0.76% and 0.21 lm/W more than the PWLED which only had phosphor resin. Then, with the increase of concentration of nano-particle resin, the transmittance gain increased. Transmittance gain had a maximum value 1.0458 at the 11% of nano-particle resin.
    It showed that added the nano-particle resin to the PWLED made the enhancement of transmittance of PWLED better. Both of the two methods increased the color uniformity of PWLED at the different viewing angles.

    第一章 導論 1 1.1 前言 1 1.2 文獻回顧 2 1.3 次波長光柵 8 1.3.1 基本光柵理論 8 1.3.2 次波長光柵理論 8 1.3.3 次波長金屬光柵 11 1.3.3.1 幾何因子 12 1.3.3.2 製程方式 13 1.3.4 光柵材質 14 1.4 論文架構 15 第二章 研究目的與方法 16 2.1 研究目的 16 2.2 量測架構與儀器 17 2.2.1 場發射掃描式電子顯微鏡 17 2.2.2 光學特性量測 18 2.2.2.1 次波長光柵特性量測 19 2.2.2.2 LED光場量測 20 2.2.2.3 LED偏極性量測 21 2.2.3 積分球與I-V電性量測 22 2.3 白光發光二極體封裝 24 2.3.1 封裝流程 24 2.3.2 矽膠層厚度優化 26 2.4 次波長介質光柵製作 27 第三章 次波長光柵元件模擬與量測 29 3.1 前言 29 3.2 光柵元件模擬 29 3.2.1 模型建立及參數設定 29 3.2.2 模擬結果 33 3.2.2.1 不同入射角之偏振光穿透率 33 3.2.2.2 不同入射角之消光比 36 3.2.2.3 不同入射波長之TM穿透率 37 3.2.3 小結 38 3.3 光柵元件量測 39 3.3.1 次波長金屬光柵量測結果 40 3.3.1.1 不同入射角之偏振光穿透率 40 3.3.1.2 不同入射角之消光比 41 3.3.1.3 不同入射波長之TM穿透率 42 3.3.2 次波長介質光柵量測結果 42 3.3.2.1 不同反應時間對偏振光穿透率之影響 42 3.3.2.2 不同入射角之偏振光穿透率 44 3.3.2.3 不同入射角之消光比 45 3.3.2.4 不同入射波長之TM穿透率 46 3.3.3 次波長介質與金屬光柵比較 46 3.4 小結 51 第四章 偏極化白光LED封裝 55 4.1 封裝結構 55 4.2 次波長金屬光柵封裝 58 4.2.1 螢光膠層之配方優化 58 4.2.2 不同視角之發光品質 59 4.2.3 不同電流之發光品質 63 4.3 類介質次波長金屬光柵封裝 67 4.3.1 類介質次波長金屬光柵對發光品質之影響 67 4.3.2 不同視角之發光品質 69 4.3.3 不同電流之發光品質 73 4.4 具奈米粒子矽膠層封裝 77 4.4.1 具奈米粒子矽膠層之效應 77 4.4.2 奈米粒子濃度對發光品質之影響 79 4.4.3 相同色溫下具奈米粒子矽膠層之效應 81 4.4.3.1 不同視角之發光品質 83 4.4.3.2 不同電流之發光品質 87 4.5 結果與討論 90 4.5.1 不同次波長光柵之影響 90 4.5.2 具奈米粒子矽膠層之影響 90 第五章 結論與未來展望 92 5.1 結論 92 5.2 未來發展方向 94 參考文獻 95

    [1] T. Kasahara, D. Aizawa, T. Irikura, T. Moriyama, M. Toda, and M. Iwamoto, “Discomfort glare caused by white LED light sources,” Journal of Light & Visual Environment, vol. 30, p. 95, (2006).
    [2] W. Pohlmann, T. Vieregge, and M. Rode, “High performance LED lamps for the automobile: needs and opportunities,” in Manufacturing LEDs for Lighting and Display, pp. 67970D-67970D-15, (2007).
    [3] P.-C. Lin, C.-H. Chen, H.-P. Yang, and H.-Y. Lin, “LED polarization conversion and angular shaping module for LCD backlighting,” in International Optical Design Conference 2010, pp. 765213-765213-9, (2010).
    [4] J.-C. Su and T.-M. Lin, “Polarized white light emitting diodes with a nano-wire grid polarizer,” Optics express, vol. 21, pp. 840-845, (2013).
    [5] 林瓘洆, “提升具有次波長金屬光柵之偏極化白光LED的光學品質,” 碩士論文, 國立台灣科技大學, 台北, (2013).
    [6] J. H. Oh, S. J. Yang, and Y. R. Do, “Polarized white light from LEDs using remote-phosphor layer sandwiched between reflective polarizer and light-recycling dichroic filter,” Optics express, vol. 21, pp. A765-A773, (2013).
    [7] G. Zhang, B. Cao, Q. Han, C. Wang, B. Zhang, and K. Xu, “Optical properties of subwavelength wiregrid polarizer designed for GaN-based LED,” in Second International Conference on Smart Materials and Nanotechnology in Engineering, pp. 74932Q-74932Q-5, (2009).
    [8] M. Ma, D. S. Meyaard, Q. Shan, J. Cho, E. F. Schubert, G. B. Kim, et al., “Polarized light emission from GaInN light-emitting diodes embedded with subwavelength aluminum wire-grid polarizers,” Applied Physics Letters, vol. 101, p. 061103, (2012).
    [9] M.-Y. Lin, H.-H. Chen, K.-H. Hsu, Y.-H. Huang, Y.-J. Chen, H. Y. Lin, et al., “White Organic Light-Emitting Diode With Linearly Polarized Emission,” Photonics Technology Letters, IEEE, vol. 25, pp. 1321-1323, (2013).
    [10] X. Yu and H. Kwok, “Optical wire-grid polarizers at oblique angles of incidence,” Journal of applied physics, vol. 93, pp. 4407-4412, (2003).
    [11] X.-J. Yu and H.-S. Kwok, “Application of wire-grid polarizers to projection displays,” Applied optics, vol. 42, pp. 6335-6341, (2003).
    [12] 林東懋, “具有次波長金屬光柵之偏極化白光發光二極體,” 碩士論文, 國立台灣科技大學, 台北, (2012).
    [13] C. A. Bennett, Principles of physical optics: Wiley, (2008).
    [14] L. Rayleigh, “On the dynamical theory of gratings,” Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, vol. 79, pp. 399-416, (1907).
    [15] A. Hessel and A. Oliner, “A new theory of Wood’s anomalies on optical gratings,” Applied Optics, vol. 4, pp. 1275-1297, (1965).
    [16] M. Moharam and T. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” JOSA, vol. 71, pp. 811-818, (1981).
    [17] D. L. Brundrett, E. N. Glytsis, and T. K. Gaylord, “Homogeneous layer models for high-spatial-frequency dielectric surface-relief gratings: conical diffraction and antireflection designs,” Applied optics, vol. 33, pp. 2695-2706, (1994).
    [18] M. Born and E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light: CUP Archive, (1999).
    [19] J. Turunen and F. Wyrowski, Diffractive optics for industrial and commercial applications: Wiley-VCH, (1998).
    [20] R. C. Jones and P. S. Eng, “The wire grid as a near-infrared polarizer,” Journal of the Optical Society of America, vol. 50, (1960).
    [21] J. J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Applied physics letters, vol. 90, pp. 061104-061104-3, (2007).
    [22] T. Weber, H.-J. Fuchs, H. Schmidt, E.-B. Kley, and A. Tunnermann, “Wire-grid polarizer for the UV spectral region,” in SPIE MOEMS-MEMS: Micro-and Nanofabrication, pp. 720504-720504-8, (2009).
    [23] S. H. Kim, J.-D. Park, and K.-D. Lee, “Fabrication of a nano-wire grid polarizer for brightness enhancement in liquid crystal display,” Nanotechnology, vol. 17, p. 4436, (2006).
    [24] S. H. Ahn, J.-S. Kim, and L. J. Guo, “Bilayer metal wire-grid polarizer fabricated by roll-to-roll nanoimprint lithography on flexible plastic substrate,” Journal of Vacuum Science & Technology B, vol. 25, pp. 2388-2391, (2007).
    [25] F. Meng, G. Luo, I. Maximov, L. Montelius, J. Chu, and H. Xu, “Fabrication and characterization of bilayer metal wire-grid polarizer using nanoimprint lithography on flexible plastic substrate,” Microelectronic Engineering, vol. 88, pp. 3108-3112, (2011).
    [26] J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, et al., “30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Applied physics letters, vol. 89, p. 141105, (2006).
    [27] C.-M. Chen, T.-P. An, Y.-M. Hung, and C.-K. Sung, “Fabricating insertion structures for metallic wire grid polarizers by nanoimprint and CMP process,” Microelectronic Engineering, vol. 88, pp. 2135-2140, (2011).
    [28] B. Cui, Z. Yu, H. Ge, and S. Y. Chou, “Large area 50 nm period grating by multiple nanoimprint lithography and spatial frequency doubling,” Applied physics letters, vol. 90, pp. 043118-043118-3, (2007).
    [29] M. Pourbaix, J. Green, R. W. Staehle, and J. Kruger, Lectures on electrochemical corrosion: Springer, (1973).
    [30] “G-Solver,” http://www.gsolver.com/
    [31] H. Tomonaga and T. Morimoto, “Indium–tin oxide coatings via chemical solution deposition,” Thin Solid Films, vol. 392, pp. 243-248, (2001).

    QR CODE