簡易檢索 / 詳目顯示

研究生: 蕭書立
Shu-Li Hsiao
論文名稱: 白光LED之螢光粉轉換白光模型建立
Phosphor-converted LED modeling
指導教授: 胡能忠
Neng-Chung Hu
口試委員: 蘇忠傑
Jung-Chieh Su
葉秉慧
Pinghui Sophia Yeh
蘇國棟
Guo-Dung Su
歐陽盟
Mang Ou-Yang,
孫文信
Wen -Shing Sun
楊宗勳
Tsung-Hsun Yang
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 109
中文關鍵詞: 發光二極體螢光粉中場光學模擬散射空間色彩均勻度
外文關鍵詞: LED, phosphor, mid field, optical simulation, scattering, spatial angular color uniformity
相關次數: 點閱:293下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 準確模擬預測螢光粉轉換式白光LED的光學特性是固態照明的研究重點之一,之前的研究顯示透過對螢光粉樣品的分析可以建立非常精確的白光LED光學模型,然而照明應用端的光學工程師並不總是能方便取得螢光粉樣本。為了解決這個問題,本論文提出了一個經由對白光LED進行外部光學量測建立模型的方式。在光學模擬部分,本論文提出的簡單白光LED模型中只包含螢光粉粒子半徑與螢光粉粒子濃度兩個關鍵參數;在光學量測部分,本研究首先使用積分球量測LED的光譜,並且使用配光曲線儀量測LED的表面中場光學特性與遠場光學特性。透過調整模型中的參數我們可以使模擬結果在LED表面中場與遠場的所有光學特性與實驗值相當接近,如此就能得到一個簡單白光LED模型。必須注意的是這個模型只是LED在特定功率操作下的等效光學模型,並不是一個完整的通用模型,當LED操作功率改變時,必須再次調整對應參數。這個方法的優點是簡單並且迅速,相對的缺點是此等效模型只能使用在對應的操作功率下。
    螢光粉的成本是影響白光LED價格的重要因素之一,在本論文中我們提出了一個簡單的模擬實驗嘗試減少螢光粉在白光LED中的使用量。我們提出的方法是在螢光粉轉換層中加入散射粒子以提高散射效應,提升散射效應可以增加短波長藍光被螢光粉粒子轉換成長波長黃光的機率。在本論文中我們分別固定螢光粉濃度與散射粒子濃度進行模擬,兩組模擬結果都顯示此方法可以有效減少螢光粉的使用量,然而缺點則是系統光學效率的降低,這也代表本方法在未來可以結合LED外部光學元件設計以求達到更好的整體光學表現。
    白光LED的空間色彩均勻度也是固態照明的研究重點之一,之前的研究顯示透過外部光學封裝可以達到非常高的空間色彩均勻度,本論文試著使用在螢光粉轉換層中加入散射粒子的方法來達到相同的效果。模擬結果顯示,我們可以經由調整螢光粉粒子濃度與散射粒子濃度在特定目標色溫之下達到良好的空間色彩均勻度,缺點則是系統光學效率有相當程度的降低,這也代表本方法在未來可以結合LED外部光學元件設計以求達到更好的整體光學表現。


    One of the important research topics of solid state lighting is to simulate the optical performance of phosphor converted white LED precisely. Previous studies have shown through the analysis of phosphor powder samples can create very precise white LED optical model. However, phosphor powder samples are not always easy to obtain for optical engineers of lighting application area. In order to solve this problem, we proposed a method to model a white LED based on its external optical measurement data. In the optical simulation part, our simple model only contained two key parameters: phosphor particle radius and phosphor particle density. In the optical measurement part, we first measured the optical spectrum via an integrating sphere. Then we measured the surface mid field optical characteristic and far field optical characteristic via a source imaging goniometer. By adjusting the parameters in the model, we could make simulation results of the LED surface mid field and all the far-field optical properties to be very close to the experimental values. Thus we created a simple white LED model. It should be noted that this model is an equivalent optical model under a given operating power but not a complete general model. When the LED operating power is changed, the corresponding parameters must be adjusted again. The advantage of this approach is easily and quickly, the disadvantage of this method is the equivalent optical model is only applicable in a particular operating power.
    The amount of phosphor used is a main factor in the price of white LEDs. In this paper, we proposed a simple simulation experiment in trying to reduce the amount of phosphor used in white LEDs. The proposed approach is to add scattering particles into the phosphor conversion layer in order to improve the scattering effect. This would increase the probability that blue light would encounter phosphor particles and be converted to long-wavelength light. We first fixed the concentration of phosphor particles and then fixed the concentration of scattering particles and did the simulation respectively. Both simulation results have shown that this idea can be used to effectively reduce the amount of phosphor powder use. However, the disadvantage is the decrease of optical system efficacy. It also indicates the proposed method can be combined with the design of LED external optical elements to achieve better overall optical performance in the future.
    The spatial angular color uniformity of white LEDs is also an important research topic of solid state lighting. Previous studies have shown via an external optical package design could reach very high spatial angular color uniformity. We tried to achieve the same goal by adding scattering particles into the phosphor conversion layer. Simulation results have shown that under a specific target correlated color temperature, we could achieve high spatial angular color uniformity by adjusting the concentration of phosphor and scattering particles. However, the disadvantage is the decrease of optical system efficacy. It also indicates the proposed method can be combined with other optical design concepts to achieve better overall optical performance in the future.

    中文摘要 I Abstract III 致謝 V Contents VI Figure index IX Table index XVI Chapter 1: Introduction 1 1.1 Background of solid state lighting 1 1.2 Objectives 13 Chapter 2: Fundamental Theory 24 2.1 Light scattering theory 24 2.1.1 Rayleigh Scattering Theory 30 2.1.2 Mie Scattering Theory 32 2.2 Near-field, mid-field, and far field 34 2.3 Measurements of LEDs 35 2.3.1 Source Imaging Goniometers (SIG) 36 2.3.2 Integrating Spheres 39 2.3.3 Luminous Intensity 40 2.3.4 Total luminous flux 41 2.3.5 Total Spectral Radiant Flux 41 2.3.6 Total Radiant Flux 42 2.3.7 Color Quantities 42 2.3.8 LED Measurement Considerations 43 2.3.9 Imaging Colorimetry as Applied to LEDs 43 2.4 Optical Modeling 45 2.4.1 Ray Tracing 45 2.4.2 Sequential Ray Tracing algorithm 46 2.4.3 Non-sequential Ray Tracing algorithm 47 2.4.4 Computer Modeling Design Steps 49 2.5 Simulation software: LightTools 51 Chapter 3: Optical modeling 54 3.1 Working principle behind white LEDs 54 3.2 Light source modeling 55 3.3 Phosphor modeling 56 3.4 Phosphor parameters 59 3.5 Research method 61 3.6 Measurement of the white LED 62 3.7 Using the far-field information 64 3.8 Using the LED emitting surface information 68 3.9 Using the information on a packaged LED 72 3.10 Verification 75 3.11 The effect of phosphor particle size 79 Chapter 4: Application 92 4.1 Motivation 92 4.2 Enhancing the Scattering Effect 93 4.3 Scattering parameters 93 4.4 Simulation results 96 4.5 Chromatic analysis 99 4.6 High angular color uniformity white LEDs 100 Chapter 5: Conclusion and future work 104 References 105

    Reference
    [1] Zukauskas, M. S. Shur, and R. Caska, Introduction to Solid-state Lighting John Wiley & Sons, New York, (2002).
    [2] D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. on Sel. Top. in Quantum Electron. 8, 310–320 (2002).
    [3] J. Y. Tsao, “Solid-state lighting: lamps, chips, and materials for tomorrow,” IEEE Circuits & Devices 20(3), 28–37 (2004).
    [4] Y. C. Lo, C. C. Chen, H. Y. Chou, K. Y. Yang, and C. C. Sun, “Design of a bike headlamp based on a power white-light-emitting diode,” Opt. Eng. 50, 080503 (2011).
    [5] Y. C. Lo, K. T. Huang, X. H. Lee, and C. C. Sun, “Optical design of a Butterfly lens for a street light based on a double-cluster LED,” Microelectron Reliab (2011), doi:10.1016/j.microrel.2011.04.007
    [6] C. C. Sun, I. Moreno, Y. C. Lo, B. C. Chiu, and W. T. Chien, “Collimating lamp with well color mixing of red/green/blue LEDs,” Opt. Express 20, A75-A84 (2011).
    [7] X. H. Lee, I. Moreno, and C. C. Sun, “High-performance LED street lighting using microlens arrays,” Opt. Express 9, 10612-10621 (2013).
    [8] X. H. Lee, J. L. Tsai, S. H. Ma, and C. C. Sun, “Surface-structured diffuser by iterative downsize molding with glass sintering technology,” Opt. Express 20, 6135-6145 (2012).

    [9] C. C. Sun, W. T. Chien, I Moreno, C. T. Hsieh, M. C. Lin, S. L. Hsiao, and X. H. Lee, “Calculating model of light transmission efficiency of diffusers attached to a lighting cavity,” Opt. Express 18, 6137-6148 (2010).
    [10] T. X. Lee, K. F. Gao, W. T. Chien, and C. C. Sun, “Light extraction analysis of GaN-based light-emitting diodes with surface texture and/or patterned substrate,” Opt. Express 15, 6670-6676 (2007).
    [11] T. H. Yang, C. Y. Chih, H. Y. Chou, and C. C. Sun, “Chromatic-Thermal-Optic-Electric Integration Model of High Power Color LEDs,” in procedding of Solid-State and Organic Lighting, (Academic, Eindhoven, Netherlands., 2012), LM2B.5.
    [12] P. Schlotter, R. Schmidt, and J. Schneider, “Luminescence conversion of blue light emitting diodes,” Appl. Phys. A 64, 417–418 (1997).
    [13] K. Sakuma, K. Omichi, N. Kimura, M. Ohashi, D. Tanaka, N. Hirosaki, Y. Yamamoto, R.-J. Xie, and T. Suehiro, “Warm-white light-emitting diode with yellowish orange SiAlON ceramic phosphor,” Opt. Lett. 29, 2001–2003 (2004).
    [14] X. Zhang, C. Guo, J. Xu, M. Wu, and Q. Su, “Three-band white light from InGaN-based blue LED chip precoated with green/red phosphors,” IEEE Photon. Technol. Lett. 17, 1160–1162 (2005).
    [15] N. T. Tran and F. G. Shi, “Studies of phosphor concentration and thickness for phosphor-based white light-emitting-diodes,” J. of Lightwave Technol. 26, 3556–3559 (2008).
    [16] C. C. Sun, T. X. Lee, S. H. Ma, Y. L. Lee, and S. M. Huang, “Precise optical modeling for LED lighting verified by cross correlation in the midfield region,” Opt. Lett. 31, 2193–2195 (2006).
    [17] W. T. Chien, C. C. Sun, and I. Moreno, “Precise optical model of multi-chip white LEDs,” Opt. Express 15, 7572–7577 (2007).
    [18] C. C. Sun, C. Y. Chen, H. Y. He, C. C. Chen, W. T. Chien, T. X. Lee, and T. H. Yang, “Precise optical modeling for silicate-based white LEDs,” Opt. Express 16, 20060–20066 (2008).
    [19] C. C. Sun, C. Y. Chen, J. H. Chang, T. H. Yang, W. S. Ji, Y. S. Jeng, and H. M. Wu, “Linear calculation model for prediction of color rendering index performance associated with correlated color temperature of white light-emitting diodes with two phosphors,” Opt. Eng. 51, 0540031-0540036 (2012).
    [20] C. H. Hung and C. H. Tien, “Phosphor-converted LED modeling by bidirectional photometric data,” Opt. Express 18, A261–A271 (2010).
    [21] M. W. Siegel, R. D. Stock, “General near-zone light source model and its application to computer automated reflector design,” Opt. Eng. 35, 2661-2679 (1996).
    [22] R. D. Stock, M. W. Siegel, “Orientation invariant light source parameters,” Opt. Eng. 35, 2651 (1996).
    [23] I. Ashdown, “Near-field photometry: a new approach,” J. Illum. Eng. Soc. 22, 163-180 (1993).
    [24] I. Moreno, “Spatial distribution of LED radiation,” Proc. SPIE 6342, 634216 (2006).
    [25] P. Manninen, J. Hovila, P. Karha, E. Ikonen, “Method for analysing luminous intensity of light-emitting diodes,” Meas. Sci. Technol. 18, 223-229 (2007).
    [26] I. Moreno and C. C. Sun, “Modeling the radiation pattern of LEDs,” Opt. Express 16, 1808–1819 (2008).
    [27] C. C. Sun, W. T. Chien, I. Moreno, C. H. Hsieh, and Y. C. Lo, “Analysis of the far-field region of LEDs,” Opt. Express 17, 13918–13927 (2009).
    [28] I. Ashdown and M. Salsbury, “A Near-field Goniospectroradiometer for LED Measurements,” in procedding of International Optical Design Conference, SPIE-OSA 6342, 634215 1-11(2006)
    [29] Philips Lumileds Lighting Company, http://www.philipslumileds.com/products/luxeon-C
    [30] LightTools from Synopsys, http://www.opticalres.com/lt/ltprodds_f.html
    [31] Intermatix Company, http://www.intematix.com/
    [32] Z. Liu, S. Liu, K. Wang, and X. Luo, “Optical analysis of phosphor’s location for high-power light-emitting diodes,” IEEE Trans. on Device and Mater. Reliab. 9, 65–73 (2009).
    [33] C. Sommer, F. Reil, J. R. Krenn, P. Hartmann, P. Pachler, H. Hoschopf, and F. P. Wenzl, “The impact of light scattering on the radiant flux of phosphor-converted high power white light-emitting diodes,” J. of Lightwave Technol. 29, 2285–2291 (2011).
    [34] N. T. Tran, J. P. You, and F. G. Shi, “Effect of phosphor particle size on luminous efficacy of phosphor-converted white LED,” J. of Lightwave Technol. 27, 5145–5150 (2009).
    [35] Radiant Zemax Company,
    http://www.radiantzemax.com/en/products/source-imaging-goniometer/
    [36] Radiant Zemax Company,
    http://www.radiantzemax.com/en/prosource/
    [37] J. K. Kim, H. Luo, E. F. Schubert, J. Cho, C. Sone, and Y. Park: Jpn. J. Appl. Phys. 44 (2005) 649.
    [38] H. Luo, J. K. Kim, E. F. Schubert, J. Cho, C. Sone, and Y. Park: Appl. Phys. Lett. 86 (2005) 243505.

    [39] F. W. Mont, J. K. Kim, M. F. Schubert, E. F. Schubert, and R. W. Siegel: J. Appl. Phys. 103 (2008) 08312
    [40] M. M. Ba-Abbad, A. A. H. Kadhum, A. B. Mohamad, M. S. Takriff, and K. Sopian, “Synthesis and Catalytic Activity of TiO2 Nanoparticles for Photochemical Oxidation of Concentrated Chlorophenols under Direct Solar Radiation,” Int. J. Electrochem. Sci. 7, 4871–4888 (2012).
    [41] C. C. Sun, C. Y. Chen, C. C. Chen, C. Y. Chiu, Y. N. Peng, Y. H. Wang, T. H. Tang, T. Y. Chung, and C. Y. Chung, “High uniformity in angular correlated-color-temperature distribution of white LEDs from 2800K to 6500K,” Opt. Express 20, 6622–6630 (2012).

    無法下載圖示 全文公開日期 2018/07/19 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE