簡易檢索 / 詳目顯示

研究生: Trong-Nghia Le
Trong-Nghia Le
論文名稱: 具兒茶酚之聚N-乙烯基吡咯烷酮及羧甲基幾丁聚醣 修飾聚二甲基矽氧烷表面以防污及抗菌
Poly(dimethylsiloxane) Surface Modification Using Catechol Functionalized Poly (N-Vinylpyrrolidone) for Antifouling and Carboxymethyl Chitosan for Antibacterial
指導教授: 李振綱
Cheng-Kang Lee
口試委員: 何明樺
Ming-Hua Ho
劉懷勝
Hwai-Shen Liu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 100
中文關鍵詞: PDMSsurface modificationcatechol functionalized PVPantifoulingcarboxymethyl chitosanantibacterial
外文關鍵詞: PDMS, surface modification, catechol functionalized PVP, antifouling, carboxymethyl chitosan, antibacterial
相關次數: 點閱:245下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 聚二甲基矽氧烷(Polydimethylsiloxane,PDMS)被廣泛使用於流體元件、光學系統和感測器。然而,因為PDMS的疏水性高,使得在某些應用上使用會有所限制。疏水性的PDMS也會受到非專一性的疏水性蛋白吸附及細菌附著導致潤濕性降低和生物附著問題。本研究提出將具有兒茶酚官能基的聚乙烯吡咯烷酮(Polyvinylpyrrolidone,PVP)接附修飾在PDMS表面上使其具有易抗生物附著性,以及利用幾丁聚醣(Chitosan)和羧甲基幾丁聚醣(Carboxymethyl chitosan,CMCS)塗層修飾於PDMS表面上使其具有抗菌性。PDMS的表面須先以KOH鹼活化,再以3-aminoproyltriethoxysilane(APTES)反應,將氨基引進表面形成PDMS-NH2,才能有效地進行表面修飾。
    具有兒茶酚官能基的聚乙烯吡咯烷酮的製備,是以PVP-COOH與咖啡酸 (Caffeic acid) 偶聯至ε-polylysine主鏈(CA-PLL-PVP)上,利用兒茶酚官能基團可將PVP接附於PDMS-NH2的表面氨基上。由於CA-PLL-PVP結構上具有多個兒茶酚和氨基,因此可將PVP有效地接附於PDMS表面。PVP修飾後的PDMS表面接觸角從116°降至14°,顯示能顯著地增強PDMS表面濕潤性。CA-PLL-PVP的表面塗層也可使BSA吸附量減少了50%,此外塗層表面上亦未觀察到有明顯的細菌生物膜(Biofilm)形成,因此CA-PLL-PVP可做為有效的抗生物膜材料。
    另一方面,幾丁聚醣(CS)和羧甲基幾丁聚醣(Carboxymethyl chitosan ,CMCS)亦可利用希夫鹼(Schiff base)反應接附於戊二醛(Glutaraldehyde ,GA)活化的PDMS-NH2表面,CMCS在PDMS表面修飾的效果較CS來的好,兩者均顯示對大腸桿菌(E. coli)有90%的抗菌活性,因此CMCS塗層的PDMS十分具有抗菌應用的潛力。


    Poly(dimethylsiloxane) (PDMS) has been widely used in fluidics, optical systems, and sensors. However, its intrinsic high hydrophobicity restricts its use in certain applications. The hydrophobicity of PDMS also suffer low wettability and biofouling problems from nonspecific protein/hydrophobic compound adsorption and cell/bacterial adhesion. This work presents the synthesis and application of catechol functionalized poly(vinylpyrrolidone) (PVP) for facile antifouling coating on PDMS surface and also the coating of chitosan and carboxymethyl chitosan on PDMS surface for the antibacterial applications. The PDMS elastomers were first introduced amino groups onto the surface (PDMS-NH2) by a base-catalyzed (KOH) reaction with 3-aminoproyltriethoxysilane (APTES) at different concentrations.
    The PDMS-NH2 was then grafted based on the reaction between the amino surface and catechol group of the catechol functionalized PVP polymers which was successfully synthesized by conjugating PVP-COOH along with caffeic acid to ε-polylysine backbone (CA-PLL-PVP) as confirmed by 1H-NMR and FT-IR analysis. With multiple catechol pendants and residue amino groups on PLL, CA-PLL-PVP was demonstrated to have a better antifouling coating as compared with previously prepared CA-PVP on the PDMS surface. A significant enhanced water wettability was observed with contact angles dropped from 116o to 14o after coating. The CA-PLL-PVP2K coatings showed much better performance than the bare one that 50% reduction on BSA adsorption was observed. The coating prepared by CA-PLL-PVP2k on PDMS-NH2 surface demonstrated the best antifouling performance that no appreciable biofilm formation could be observed on the coating surface. This new facile fouling resistant PDMS may find greater biomedical applications to eliminate the potential adherence problems caused by natural biofouling.
    On the other hand, chitosan (CS) and carboxymethyl chitosan (CMCS) was also successfully grafted to the PDMS-NH2 surface by pre-activated with glutaraldehyde (GA) via Schiff base reaction, and confirmed by ATR-FTIR and FE-SEM-EDX. CMCS could be more effective than CS when coating on the PDMS surface. Both PDMS-CS and PDMS-CMCS demonstrated significantly enhanced antibacterial activity against E. coli¬ cells that 90% killing could be achieved. This coated PDMS may have good potential to develop an antibacterial application.

    Abstract i Acknowledgment v Abbreviations x Index of Figures xi Index of Tables xv Chapter 1 INTRODUCTION 1 1.1 Background 1 1.2 Research objectives 2 1.2.1 APTES modified PDMS surface 2 1.2.2 Catechol functionalized polyvinylpyrrolidone coated amino-PDMS surface – an antifouling material 3 1.2.3 Chitosan and carboxymethyl chitosan modified PDMS-an antimicrobial material 5 Chapter 2 LITERATURE REVIEW 6 2.1 Poly(dimethylsiloxane) 6 2.1.1 Overview of Poly(dimethylsiloxane) 6 2.1.2 PDMS surface modification 7 2.2 Catechol functionalized poly (N-vinyl pyrrolidone) 8 2.2.1 Overview of PVP 8 2.2.2 Novel catechol functionalized poly (N-vinylpyrrolidone) coated PDMS 9 2.2.3 Reversible Addition-Fragmentation chain Transfer (RAFT) polymerization 11 2.2.4 Carbodiimide/N-Hydroxysuccinimide covalent coupling 16 2.3 Chitosan and Carboxymethyl Chitosan – Antibacterial material 17 2.3.1 Chitosan 17 2.3.2 Carboxymethyl Chitosan 18 Chapter 3 MATERIALS AND METHODS 20 3.1 Materials 20 3.1.1 Chemicals 20 3.1.2 Bacteria 21 3.1.3 Bacterial culture medium 22 3.1.4 Reagent 22 3.1.5 Apparatus 23 3.2 Methods 24 3.2.1 Preparation of catechol functionalized polyvinylpyrrolidone 24 3.2.1.1 Quaternary ammonium catechol PVP (CA-PVP) 24 3.2.1.2 CA-PLL-PVP 25 3.2.2 Preparation of PDMS elastomer 26 3.2.3 Base-Catalyzed Equilibrium of PDMS Elastomers 26 3.2.4 Preparation and characterization of catechol functionalized PVP coated PDMS 27 3.2.4.1 Preparation of PDMS-CAPVP 27 3.2.4.2 Antifouling activity 27 3.2.5 Preparation and characterization of CS and CMCS coated PDMS 29 3.2.5.1 Carboxymethyl chitosan (CMCS) preparation 29 3.2.5.2 Preparation of PDMS-NH2-GA 29 3.2.5.3 Preparation of PDMS modified CS/CMCS 29 3.2.5.4 Antibacterial activity 29 3.3 Characterization 30 3.3.1 Ninhydrin assay 30 3.3.2 Sulfuric acid – phenol assay 31 3.3.3 Iodine titration 32 3.3.4 H2O2-KMnO4 assay 33 3.3.5 1H-NMR spectroscopy 34 3.3.6 Field Emission Scanning Electron Microscopy (FE-SEM) 34 3.3.7 Attenuated Reflection-Fourier transform infrared spectra (ATR-FTIR) 34 3.3.8 Contact angle measurement 34 Chapter 4 PDMS MODIFIED CATECHOL FUNCTIONALIZED POLYVINYLPYRROLIDONE – AN ANTIFOULING MATERIAL 35 4.1 Characterization of catechol functionalized polyvinylpyrrolidone 35 4.1.1 Quaternary ammonium catechol PVP 35 4.1.2 CA-PLL-PVP 36 4.1.2.1 Synthesis of carboxylic polyvinylpyrrolidone 36 4.1.2.2 Synthesis of catechol functionalized PVP (CA-PLL-PVP) 40 4.2 Base-Catalyzed Equilibrium of Silicone Elastomers 42 4.2.1 KOH concentration 44 4.2.2 APTES concentration 45 4.2.3 Distribution of amino group within PDMS-NH2 47 4.3 Characterization of catechol functionalized PVP modified PDMS 48 4.4 Antifouling activity 57 4.4.1 Protein adsorption 57 4.4.2 Anti-biofilm 58 4.5 Conclusion 61 Chapter 5 PDMS MODIFIED CHITOSAN AND CARBOXYMETHYL CHITOSAN AS AN ANTIMICROBIAL MATERIAL 62 5.1 Characterization of CMCS 62 5.2 Characterization of PDMS-NH2-GA 63 5.3 Characterization of PDMS modified CS/CMCS 64 5.4 Antibacterial activity 68 5.5 Conclusion 70 Chapter 6 CONCLUSION AND FUTURE WORK 71 6.1 Conclusion 71 6.2 Future work 72 REFERENCES 74

    1. Zhang, H. and M. Chiao, Anti-fouling coatings of poly (dimethylsiloxane) devices for biological and biomedical applications. Journal of medical and biological engineering, 2015. 35(2): p. 143-155.
    2. Sui, G., et al., Solution-phase surface modification in intact poly (dimethylsiloxane) microfluidic channels. Analytical chemistry, 2006. 78(15): p. 5543-5551.
    3. Hoek, I., F. Tho, and W.M. Arnold, Sodium hydroxide treatment of PDMS based microfluidic devices. Lab on a Chip, 2010. 10(17): p. 2283-2285.
    4. Zhang, J., Y. Chen, and M.A. Brook, Facile functionalization of PDMS elastomer surfaces using thiol–ene click chemistry. Langmuir, 2013. 29(40): p. 12432-12442.
    5. Brook, M.A., et al., Surface etching of silicone elastomers by depolymerization. Canadian Journal of Chemistry, 2011. 90(1): p. 153-160.
    6. Mosaiab, T., et al., Recyclable and stable silver deposited magnetic nanoparticles with poly (vinyl pyrrolidone)-catechol coated iron oxide for antimicrobial activity. Materials Science and Engineering: C, 2013. 33(7): p. 3786-3794.
    7. Linear Polydimethylsiloxanes. 1994.
    8. Mark, J., H. Allcock, and R. West, Inorganic Polymers Prentice Hall. New Jersey, USA, 1992.
    9. Zhang, B., et al., Flexible packaging of solid-state integrated circuit chips with elastomeric microfluidics. Scientific reports, 2013. 3: p. 1098.
    10. McDonald, J.C., et al., Fabrication of microfluidic systems in poly (dimethylsiloxane). ELECTROPHORESIS: An International Journal, 2000. 21(1): p. 27-40.
    11. Prentice, W.E. and M.L. Voight, Techniques in musculoskeletal rehabilitation. 2001: McGraw-Hill.
    12. Bodas, D. and C. Khan-Malek, Hydrophilization and hydrophobic recovery of PDMS by oxygen plasma and chemical treatment—An SEM investigation. Sensors and Actuators B: Chemical, 2007. 123(1): p. 368-373.
    13. Fritz, J.L. and M.J. Owen, Hydrophobic recovery of plasma-treated polydimethylsiloxane. The Journal of adhesion, 1995. 54(1-4): p. 33-45.
    14. Hillborg, H., et al., Crosslinked polydimethylsiloxane exposed to oxygen plasma studied by neutron reflectometry and other surface specific techniques. Polymer, 2000. 41(18): p. 6851-6863.
    15. Chen, H., et al., Protein repellant silicone surfaces by covalent immobilization of poly (ethylene oxide). Biomaterials, 2005. 26(15): p. 2391-2399.
    16. Guo, D.-J., et al., Surface-hydrophilic and protein-resistant silicone elastomers prepared by hydrosilylation of vinyl poly (ethylene glycol) on hydrosilanes-poly (dimethylsiloxane) surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007. 308(1-3): p. 129-135.
    17. Wang, A.-J., J.-J. Feng, and J. Fan, Covalent modified hydrophilic polymer brushes onto poly (dimethylsiloxane) microchannel surface for electrophoresis separation of amino acids. Journal of Chromatography A, 2008. 1192(1): p. 173-179.
    18. Yeh, P.Y., et al., Nonfouling hydrophilic poly (ethylene glycol) engraftment strategy for PDMS/SU-8 heterogeneous microfluidic devices. Langmuir, 2012. 28(46): p. 16227-16236.
    19. Seo, J.-H., et al., Quick and simple modification of a poly (dimethylsiloxane) surface by optimized molecular design of the anti-biofouling phospholipid copolymer. Soft Matter, 2011. 7(6): p. 2968-2976.
    20. Kuo, W.-H., et al., Surface modification with poly (sulfobetaine methacrylate-co-acrylic acid) to reduce fibrinogen adsorption, platelet adhesion, and plasma coagulation. Biomacromolecules, 2011. 12(12): p. 4348-4356.
    21. Keefe, A.J., N.D. Brault, and S. Jiang, Suppressing surface reconstruction of superhydrophobic PDMS using a superhydrophilic zwitterionic polymer. Biomacromolecules, 2012. 13(5): p. 1683-1687.
    22. Wu, Z., et al., Poly (N-vinylpyrrolidone)-modified poly (dimethylsiloxane) elastomers as anti-biofouling materials. Colloids and Surfaces B: Biointerfaces, 2012. 96: p. 37-43.
    23. Haaf, F., A. Sanner, and F. Straub, Polymers of N-vinylpyrrolidone: synthesis, characterization and uses. Polymer Journal, 1985. 17(1): p. 143.
    24. Laurent, S., et al., Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chemical reviews, 2008. 108(6): p. 2064-2110.
    25. Huber, D.L., Synthesis, properties, and applications of iron nanoparticles. Small, 2005. 1(5): p. 482-501.
    26. Maximous, N., G. Nakhla, and W. Wan, Comparative assessment of hydrophobic and hydrophilic membrane fouling in wastewater applications. Journal of membrane Science, 2009. 339(1): p. 93-99.
    27. Xiang, T., et al., Surface hydrophilic modification of polyethersulfone membranes by surface-initiated ATRP with enhanced blood compatibility. Colloids and Surfaces B: Biointerfaces, 2013. 110: p. 15-21.
    28. Folttmann, H. and A. Quadir, Polyvinylpyrrolidone (PVP)—one of the most widely used excipients in pharmaceuticals: an overview. Drug Deliv Technol, 2008. 8(6): p. 22-27.
    29. Koczkur, K.M., et al., Polyvinylpyrrolidone (PVP) in nanoparticle synthesis. Dalton Transactions, 2015. 44(41): p. 17883-17905.
    30. Yoshida, K., et al., Anaphylaxis to polyvinylpyrrolidone in povidone-iodine for impetigo contagiosum in a boy with atopic dermatitis. International archives of allergy and immunology, 2008. 146(2): p. 169-173.
    31. McDonnell, G. and A.D. Russell, Antiseptics and disinfectants: activity, action, and resistance. Clinical microbiology reviews, 1999. 12(1): p. 147-179.
    32. Zhang, R., et al., Antifouling membranes for sustainable water purification: strategies and mechanisms. Chemical Society Reviews, 2016. 45(21): p. 5888-5924.
    33. Banerjee, I., R.C. Pangule, and R.S. Kane, Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Advanced Materials, 2011. 23(6): p. 690-718.
    34. Bartzoka, V., M.R. McDermott, and M.A. Brook, Protein‐Silicone Interactions. Advanced Materials, 1999. 11(3): p. 257-259.
    35. Wang, Y., et al., Covalent micropatterning of poly (dimethylsiloxane) by photografting through a mask. Analytical chemistry, 2005. 77(23): p. 7539-7546.
    36. Wong, I. and C.-M. Ho, Surface molecular property modifications for poly (dimethylsiloxane)(PDMS) based microfluidic devices. Microfluidics and nanofluidics, 2009. 7(3): p. 291.
    37. Liu, X., et al., Poly (N-vinylpyrrolidone)-grafted poly (dimethylsiloxane) surfaces with tunable microtopography and anti-biofouling properties. RSC Advances, 2013. 3(14): p. 4716-4722.
    38. Liu, X., et al., Poly (N‐vinylpyrrolidone)‐Modified Surfaces for Biomedical Applications. Macromolecular bioscience, 2013. 13(2): p. 147-154.
    39. Yuan, H., et al., Protein adsorption resistance of PVP-modified polyurethane film prepared by surface-initiated atom transfer radical polymerization. Applied Surface Science, 2016. 363: p. 483-489.
    40. Kuypers, M.H., G.F. Steeghs, and E. Brinkmann, Method of providing a substrate with a layer comprising a polyvinyl based hydrogel and a biochemically active material. 1992, Google Patents.
    41. Liu, Z.-M., et al., Surface modification of polypropylene microfiltration membranes by graft polymerization of N-vinyl-2-pyrrolidone. European polymer journal, 2004. 40(9): p. 2077-2087.
    42. Liu, Z.-M., et al., Surface modification of polypropylene microfiltration membranes by the immobilization of poly (N-vinyl-2-pyrrolidone): a facile plasma approach. Journal of membrane science, 2005. 249(1): p. 21-31.
    43. Meinhold, D., et al., Hydrogel characteristics of electron-beam-immobilized poly (vinylpyrrolidone) films on poly (ethylene terephthalate) supports. Langmuir, 2004. 20(2): p. 396-401.
    44. Barros, J., et al., Poly (N-vinyl-2-pyrrolidone) hydrogels produced by Fenton reaction. Polymer, 2006. 47(26): p. 8414-8419.
    45. Peniche, C., et al., Study of the thermal degradation of poly(N-vinyl-2-pyrrolidone) by thermogravimetry–FTIR. Journal of Applied Polymer Science, 1993. 50(3): p. 485-493.
    46. Lee, H., et al., Mussel-inspired surface chemistry for multifunctional coatings. science, 2007. 318(5849): p. 426-430.
    47. Kang, S.M., et al., One‐step multipurpose surface functionalization by adhesive catecholamine. Advanced functional materials, 2012. 22(14): p. 2949-2955.
    48. Jiang, J., et al., Antifouling and antimicrobial polymer membranes based on bioinspired polydopamine and strong hydrogen-bonded poly (N-vinyl pyrrolidone). ACS applied materials & interfaces, 2013. 5(24): p. 12895-12904.
    49. Waite, J.H. and M.L. Tanzer, Polyphenolic substance of Mytilus edulis: novel adhesive containing L-dopa and hydroxyproline. Science, 1981. 212(4498): p. 1038-1040.
    50. Li, A., et al., A mussel-inspired adhesive with stronger bonding strength under underwater conditions than under dry conditions. Chemical Communications, 2015. 51(44): p. 9117-9120.
    51. Lim, C., et al., Nanomechanics of poly (catecholamine) coatings in aqueous solutions. Angewandte Chemie International Edition, 2016. 55(10): p. 3342-3346.
    52. Chiefari, J., et al., Living free-radical polymerization by reversible addition− fragmentation chain transfer: the RAFT process. Macromolecules, 1998. 31(16): p. 5559-5562.
    53. Braunecker, W.A. and K. Matyjaszewski, Controlled/living radical polymerization: Features, developments, and perspectives. Progress in Polymer Science, 2007. 32(1): p. 93-146.
    54. Hadasha, W. and B. Klumperman, Atom transfer radical polymerization as a powerful tool in the synthesis of molecular brushes. Polymer International, 2014. 63(5): p. 824-834.
    55. Wu, Z., et al., Protein adsorption on poly (N-vinylpyrrolidone)-modified silicon surfaces prepared by surface-initiated atom transfer radical polymerization. Langmuir, 2009. 25(5): p. 2900-2906.
    56. Aroua, S., et al., RAFT synthesis of poly (vinylpyrrolidone) amine and preparation of a water-soluble C 60-PVP conjugate. Polymer Chemistry, 2015. 6(14): p. 2616-2619.
    57. Torchilin, V., et al., Amphiphilic poly-N-vinylpyrrolidones:: synthesis, properties and liposome surface modification. Biomaterials, 2001. 22(22): p. 3035-3044.
    58. Boyer, C., et al., Bioapplications of RAFT polymerization. Chemical reviews, 2009. 109(11): p. 5402-5436.
    59. Chiefari, J., et al., Thiocarbonylthio Compounds (SC (Z) S− R) in Free Radical Polymerization with Reversible Addition-Fragmentation Chain Transfer (RAFT Polymerization). Effect of the Activating Group Z. Macromolecules, 2003. 36(7): p. 2273-2283.
    60. Seabra, A.B., R. da Silva, and M.G. de Oliveira, Polynitrosated polyesters: preparation, characterization, and potential use for topical nitric oxide release. Biomacromolecules, 2005. 6(5): p. 2512-2520.
    61. Hoyle, C.E., T.Y. Lee, and T. Roper, Thiol–enes: Chemistry of the past with promise for the future. Journal of Polymer Science Part A: Polymer Chemistry, 2004. 42(21): p. 5301-5338.
    62. Kuttner, C., et al., Macromolecular Decoration of Nanoparticles for Guiding Self-Assembly in 2D and 3D. 2016: Wiley-VCH.
    63. Staros, J.V., R.W. Wright, and D.M. Swingle, Enhancement by N-hydroxysulfosuccinimide of water-soluble carbodiimide-mediated coupling reactions. Analytical biochemistry, 1986. 156(1): p. 220-222.
    64. Sur, A., et al., Immune activation efficacy of indolicidin is enhanced upon conjugation with carbon nanotubes and gold nanoparticles. PloS one, 2015. 10(4): p. e0123905.
    65. Kirk, J.F., et al., Mechanical and biocompatible characterization of a cross-linked collagen-hyaluronic acid wound dressing. Biomatter, 2013. 3(4): p. e25633.
    66. He, P., S.S. Davis, and L. Illum, In vitro evaluation of the mucoadhesive properties of chitosan microspheres. International journal of pharmaceutics, 1998. 166(1): p. 75-88.
    67. Singla, A. and M. Chawla, Chitosan: Some pharmaceutical and biological aspects‐an update. Journal of Pharmacy and Pharmacology, 2001. 53(8): p. 1047-1067.
    68. Kas, H.S., Chitosan: properties, preparations and application to microparticulate systems. Journal of Microencapsulation, 1997. 14(6): p. 689-711.
    69. Cheung, R.C.F., et al., Chitosan: an update on potential biomedical and pharmaceutical applications. Marine drugs, 2015. 13(8): p. 5156-5186.
    70. Park, B.K. and M.-M. Kim, Applications of chitin and its derivatives in biological medicine. International journal of molecular sciences, 2010. 11(12): p. 5152-5164.
    71. Hirano, S. and N. Nagao, Effects of chitosan, pectic acid, lysozyme, and chitinase on the growth of several phytopathogens. Agricultural and biological chemistry, 1989. 53(11): p. 3065-3066.
    72. Kendra, D.F. and L.A. Hadwiger, Characterization of the smallest chitosan oligomer that is maximally antifungal toFusarium solani and elicits pisatin formation inPisum sativum. Experimental mycology, 1984. 8(3): p. 276-281.
    73. Tokura, S., et al., Molecular weight dependent antimicrobial activity by chitosan, in New Macromolecular Architecture and Functions. 1996, Springer. p. 199-207.
    74. Kong, M., et al., Antimicrobial properties of chitosan and mode of action: a state of the art review. International journal of food microbiology, 2010. 144(1): p. 51-63.
    75. Tikhonov, V.E., et al., Bactericidal and antifungal activities of a low molecular weight chitosan and its N-/2 (3)-(dodec-2-enyl) succinoyl/-derivatives. Carbohydrate polymers, 2006. 64(1): p. 66-72.
    76. Mourya, V., N.N. Inamdar, and A. Tiwari, Carboxymethyl chitosan and its applications. Advanced Materials Letters, 2010. 1(1): p. 11-33.
    77. Sashiwa, H., et al., Chemical modification of chitosan. Part 15: Synthesis of novel chitosan derivatives by substitution of hydrophilic amine using N-carboxyethylchitosan ethyl ester as an intermediate. Carbohydrate research, 2003. 338(6): p. 557-561.
    78. Holme, K.R. and A.S. Perlin, Chitosan N-sulfate. A water-soluble polyelectrolyte. Carbohydrate research, 1997. 302(1-2): p. 7-12.
    79. Ouchi, T., H. Nishizawa, and Y. Ohya, Aggregation phenomenon of PEG-grafted chitosan in aqueous solution. Polymer, 1998. 39(21): p. 5171-5175.
    80. Park, I.-K., et al., Galactosylated chitosan (GC)-graft-poly (vinyl pyrrolidone)(PVP) as hepatocyte-targeting DNA carrier: Preparation and physicochemical characterization of GC-graft-PVP/DNA complex (1). Journal of controlled release, 2003. 86(2-3): p. 349-359.
    81. Park, I., et al., Visualization of transfection of hepatocytes by galactosylated chitosan-graft-poly (ethylene glycol)/DNA complexes by confocal laser scanning microscopy. International journal of pharmaceutics, 2003. 257(1-2): p. 103-110.
    82. Wang, R., et al., Inhibition of Escherichia coli and Proteus mirabilis adhesion and biofilm formation on medical grade silicone surface. Biotechnology and bioengineering, 2012. 109(2): p. 336-345.
    83. El‐Shafei, A.M., et al., Antibacterial activity of cationically modified cotton fabric with carboxymethyl chitosan. Journal of Applied Polymer Science, 2008. 110(3): p. 1289-1296.
    84. Li, Z., et al., Study on antibacterial O-carboxymethylated chitosan/cellulose blend film from LiCl/N, N-dimethylacetamide solution. Polymer, 2002. 43(4): p. 1541-1547.
    85. Fei Liu, X., et al., Antibacterial action of chitosan and carboxymethylated chitosan. Journal of applied polymer science, 2001. 79(7): p. 1324-1335.
    86. Weng, L., et al., In vitro and in vivo evaluation of biodegradable embolic microspheres with tunable anticancer drug release. Acta biomaterialia, 2013. 9(6): p. 6823-6833.
    87. Ghasemi, M., et al., Determination of amine and aldehyde surface densities: application to the study of aged plasma treated polyethylene films. Langmuir, 2007. 23(23): p. 11554-11561.
    88. Ciesielski, W. and R. Zakrzewski, Iodimetric titration of sulfur compounds in alkaline medium. Chemia analityczna, 2006. 51(5): p. 653.
    89. Shin, Y.M., Y.B. Lee, and H. Shin, Time-dependent mussel-inspired functionalization of poly(l-lactide-co-ɛ-caprolactone) substrates for tunable cell behaviors. Colloids and Surfaces B: Biointerfaces, 2011. 87(1): p. 79-87.
    90. Mack, D., et al., Mechanisms of biofilm formation in Staphylococcus epidermidis and Staphylococcus aureus: functional molecules, regulatory circuits, and adaptive responses. International Journal of Medical Microbiology, 2004. 294(2–3): p. 203-212.
    91. Kim, J., et al., The mechanisms of hydrophobic recovery of polydimethylsiloxane elastomers exposed to partial electrical discharges. Journal of colloid and interface science, 2001. 244(1): p. 200-207.

    QR CODE