簡易檢索 / 詳目顯示

研究生: 朱冠霖
GUAN-LIN ZHU
論文名稱: 以新型濕式原子氣相沈積氧化鋁修飾富鎳層狀氧化物正極之研究
New Wet Atomic Layer Deposition with Aluminum Oxide Modified Nickel-rich Layered Oxide Cathode
指導教授: 黃炳照
Bing-Joe Hwang
蘇威年
Wei-Nien Su
吳溪煌
She-Huang Wu
口試委員: 黃炳照
Bing-Joe Hwang
蘇威年
Wei-Nien Su
吳溪煌
She-Huang Wu
蔡秉均
Ping-Chun Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 128
中文關鍵詞: 富鎳層狀材料正極材料表面改質濕式原子氣相沈積法人工固態電解質介面界面穩定性
外文關鍵詞: Nickel-rich layered material, cathode material, surface modification, wet atomic layer deposition coating method, artificial solid electrolyte interface, interface stability
相關次數: 點閱:221下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 摘要 I ABSTRACT II 致謝 IV 目錄 VI 圖目錄 VIII 表目錄 XIII 第 1 章 緒論 1 1.1 前言 1 1.2 鋰離子電池的組成及工作原理 2 1.3 正極(陰極)材料 4 1.3.1 橄欖石型LiMPO4 化合物 4 1.3.2 尖晶石型LiM2O4化合物 5 1.3.3 層狀LiMO2化合物 6 第 2 章 富鎳層狀正極材料 9 2.1 富鎳正極材料之問題 10 2.1.1 陽離子混合 (Cation mixing) 10 2.1.2 正極材料氧氣析出 11 2.1.3 表面汙染物影響 13 2.1.4 NCM 微裂紋的形成 14 2.2 正極材料之表面改質 17 2.2.1 溶膠-凝膠(Sol-gel)法 19 2.2.2 原子層沉積法 Atomic layer deposition(ALD) 20 2.2.3 化學氣相沉積法Chemical vapor deposition(CVD) 22 2.2.4 共沉澱法Co-precipitation 24 2.2.5 乾式包覆法Dry-coating 25 2.3 研究動機與目的 28 第 3 章 實驗方法及實驗儀器 29 3.1 實驗儀器及配件 29 3.2 實驗藥品 30 3.3 材料合成 31 3.3.1 LiNi0.8Co0.1Ni0.1O2之合成 31 3.3.2 Al2O3濕式表面包覆 32 摘要 I ABSTRACT II 致謝 IV 目錄 VI 圖目錄 VIII 表目錄 XIII 第 1 章 緒論 1 1.1 前言 1 1.2 鋰離子電池的組成及工作原理 2 1.3 正極(陰極)材料 4 1.3.1 橄欖石型LiMPO4 化合物 4 1.3.2 尖晶石型LiM2O4化合物 5 1.3.3 層狀LiMO2化合物 6 第 2 章 富鎳層狀正極材料 9 2.1 富鎳正極材料之問題 10 2.1.1 陽離子混合 (Cation mixing) 10 2.1.2 正極材料氧氣析出 11 2.1.3 表面汙染物影響 13 2.1.4 NCM 微裂紋的形成 14 2.2 正極材料之表面改質 17 2.2.1 溶膠-凝膠(Sol-gel)法 19 2.2.2 原子層沉積法 Atomic layer deposition(ALD) 20 2.2.3 化學氣相沉積法Chemical vapor deposition(CVD) 22 2.2.4 共沉澱法Co-precipitation 24 2.2.5 乾式包覆法Dry-coating 25 2.3 研究動機與目的 28 第 3 章 實驗方法及實驗儀器 29 3.1 實驗儀器及配件 29 3.2 實驗藥品 30 3.3 材料合成 31 3.3.1 LiNi0.8Co0.1Ni0.1O2之合成 31 3.3.2 Al2O3濕式表面包覆 32 3.3.3 正極極片之製備 36 3.4 材料結構及特性鑑定 37 3.4.1 XRD X-ray diffraction分析儀 37 3.4.2 場發射掃描式電子顯微鏡(FE-SEM) 37 3.4.3 場發射穿透式電子顯微鏡 (FE-TEM) 38 3.4.4 傅立葉轉換紅外光譜儀(FTIR) 40 3.4.5 X射線光電子能譜(XPS) 41 3.5 電池材料電化學特性測試 42 3.5.1 充放電測試 43 3.5.2 交流阻抗分析 43 3.5.3 循環伏安分析 44 第 4 章 發展新型濕式原子沉積法(Wet-ALD) 修飾NMC811 45 4.1 曝露蒸氣對NMC811之影響鑑定 45 4.1.1 FTIR 官能基強度分析 45 4.1.2 曝露蒸氣XRD結構分析 48 4.2 曝露蒸氣之電極電化學分析 49 4.2.1 開環電位交流阻抗分析 49 4.2.2 長圈數穩定性測試 50 4.2.3 XPS極片表面鑑定分析 54 4.3 NMC811包覆Al2O3 XRD結構分析 57 4.4 包覆Al2O3之粉體型態分析 59 4.4.1 包覆粉體SEM型態分析 59 4.4.2 包覆粉體TEM型態分析 62 4.4.3 包覆粉體XPS表面鑑定分析 66 4.4.4 循環後SEM型態分析 67 4.5 包覆Al2O3之電極電化學分析 69 4.5.1 開環電位交流阻抗分析 70 4.5.2 長圈數穩定性測試 72 4.5.3 長圈數循環交流阻抗分析 83 4.5.4 變速率性能測試 85 4.5.5 循環伏安法氧化還原電流分析 86 4.5.6 XPS極片表面鑑定分析 90 第 5 章 結論 97 第 6 章 未來展望 101 參考文獻 103

    1. Yoo, H. D.; Markevich, E.; Salitra, G.; Sharon, D.; Aurbach, D., On the challenge of developing advanced technologies for electrochemical energy storage and conversion. Materials Today 2014, 17 (3), 110-121.
    2. Liang, Y.; Zhao, C. Z.; Yuan, H.; Chen, Y.; Zhang, W.; Huang, J. Q.; Yu, D.; Liu, Y.; Titirici, M. M.; Chueh, Y. L., A review of rechargeable batteries for portable electronic devices. InfoMat 2019, 1 (1), 6-32.
    3. Roy, P.; Srivastava, S. K., Nanostructured anode materials for lithium ion batteries. Journal of Materials Chemistry A 2015, 3 (6), 2454-2484.
    4. Bensalah, N.; Dawood, H., Review on synthesis, characterizations, and electrochemical properties of cathode materials for lithium ion batteries. 2016.
    5. Manthiram, A.; Goodenough, J., Lithium insertion into Fe2 (SO4) 3 frameworks. Journal of Power Sources 1989, 26 (3-4), 403-408.
    6. Padhi, A. K.; Nanjundaswamy, K. S.; Goodenough, J. B., Phospho‐olivines as positive‐electrode materials for rechargeable lithium batteries. Journal of the electrochemical society 1997, 144 (4), 1188.
    7. Huang, H.; Yin, S.-C.; Nazar, L. s., Approaching theoretical capacity of LiFePO4 at room temperature at high rates. Electrochemical and Solid State Letters 2001, 4 (10), A170.
    8. Kang, B.; Ceder, G., Battery materials for ultrafast charging and discharging. Nature 2009, 458 (7235), 190-193.
    9. Kmječ, T.; Kohout, J.; Dopita, M.; Veverka, M.; Kuriplach, J., Mössbauer Spectroscopy of Triphylite (LiFePO4) at Low Temperatures. Condensed Matter 2019, 4 (4), 86.
    10. Thackeray, M.; David, W.; Bruce, P.; Goodenough, J., Lithium insertion into manganese spinels. Materials Research Bulletin 1983, 18 (4), 461-472.
    11. Aurbach, D.; Levi, M.; Gamulski, K.; Markovsky, B.; Salitra, G.; Levi, E.; Heider, U.; Heider, L.; Oesten, R., Capacity fading of LixMn2O4 spinel electrodes studied by XRD and electroanalytical techniques. Journal of Power Sources 1999, 81, 472-479.
    12. Ohzuku, T.; Takeda, S.; Iwanaga, M., Solid-state redox potentials for Li [Me1/2Mn3/2] O4 (Me: 3d-transition metal) having spinel-framework structures: a series of 5 volt materials for advanced lithium-ion batteries. Journal of Power Sources 1999, 81, 90-94.
    13. Kim, J.-H.; Myung, S.-T.; Yoon, C. S.; Kang, S.; Sun, Y.-K., Comparative study of LiNi0. 5Mn1. 5O4-δ and LiNi0. 5Mn1. 5O4 cathodes having two crystallographic structures: fd 3̄ m and P 4332. Chemistry of materials 2004, 16 (5), 906-914.
    14. Zhang, T.; Li, D.; Tao, Z.; Chen, J., Understanding electrode materials of rechargeable lithium batteries via DFT calculations. Progress in Natural Science: Materials International 2013, 23 (3), 256-272.
    15. Dyer, L. D.; Borie Jr, B. S.; Smith, G. P., Alkali metal-nickel oxides of the type MNiO2. Journal of the American Chemical Society 1954, 76 (6), 1499-1503.
    16. Kalyani, P.; Kalaiselvi, N.; Renganathan, N., Microwave-assisted synthesis of LiNiO2—a preliminary investigation. Journal of power sources 2003, 123 (1), 53-60.
    17. Mizushima, K.; Jones, P.; Wiseman, P.; Goodenough, J. B., LixCoO2 (0< x<-1): A new cathode material for batteries of high energy density. Materials Research Bulletin 1980, 15 (6), 783-789.
    18. Ohzuku, T.; Makimura, Y., Layered lithium insertion material of LiNi1/2Mn1/2O2: A possible alternative to LiCoO2 for advanced lithium-ion batteries. Chemistry letters 2001, 30 (8), 744-745.
    19. Kang, K.; Meng, Y. S.; Breger, J.; Grey, C. P.; Ceder, G., Electrodes with high power and high capacity for rechargeable lithium batteries. Science 2006, 311 (5763), 977-980.
    20. Hinuma, Y.; Meng, Y. S.; Kang, K.; Ceder, G., Phase transitions in the LiNi0. 5Mn0. 5O2 system with temperature. Chemistry of Materials 2007, 19 (7), 1790-1800.
    21. Hinuma, Y.; Meng, Y. S.; Kang, K.; Ceder, G. In Ab-Initio and Experimental Study on Structural Transitions and Thermal Disorder of LiNi0. 5Mn0. 5O2, ECS Meeting Abstracts, IOP Publishing: 2006; p 350.
    22. Meng, X.; Dou, S.; Wang, W.-l., High power and high capacity cathode material LiNi0. 5Mn0. 5O2 for advanced lithium-ion batteries. Journal of Power Sources 2008, 184 (2), 489-493.
    23. Xia, Y.; Zheng, J.; Wang, C.; Gu, M., Designing principle for Ni-rich cathode materials with high energy density for practical applications. Nano Energy 2018, 49, 434-452.
    24. Wang, Y.; Zhang, Q.; Xue, Z. C.; Yang, L.; Wang, J.; Meng, F.; Li, Q.; Pan, H.; Zhang, J. N.; Jiang, Z., An In Situ Formed Surface Coating Layer Enabling LiCoO2 with Stable 4.6 V High‐Voltage Cycle Performances. Advanced Energy Materials 2020, 10 (28), 2001413.
    25. Radin, M. D.; Hy, S.; Sina, M.; Fang, C.; Liu, H.; Vinckeviciute, J.; Zhang, M.; Whittingham, M. S.; Meng, Y. S.; Van der Ven, A., Narrowing the gap between theoretical and practical capacities in Li‐ion layered oxide cathode materials. Advanced Energy Materials 2017, 7 (20), 1602888.
    26. Chakraborty, A.; Kunnikuruvan, S.; Kumar, S.; Markovsky, B.; Aurbach, D.; Dixit, M.; Major, D. T., Layered Cathode Materials for Lithium-Ion Batteries: Review of Computational Studies on LiNi1–x–y Co x Mn y O2 and LiNi1–x–y Co x Al y O2. Chemistry of Materials 2020, 32 (3), 915-952.
    27. Xu, B.; Fell, C. R.; Chi, M.; Meng, Y. S., Identifying surface structural changes in layered Li-excess nickel manganese oxides in high voltage lithium ion batteries: A joint experimental and theoretical study. Energy & Environmental Science 2011, 4 (6), 2223-2233.
    28. Zhang, Q.; Su, Y.; Chen, L.; Lu, Y.; Bao, L.; He, T.; Wang, J.; Chen, R.; Tan, J.; Wu, F., Pre-oxidizing the precursors of Nickel-rich cathode materials to regulate their Li+/Ni2+ cation ordering towards cyclability improvements. Journal of Power Sources 2018, 396, 734-741.
    29. Jung, S. K.; Gwon, H.; Hong, J.; Park, K. Y.; Seo, D. H.; Kim, H.; Hyun, J.; Yang, W.; Kang, K., Understanding the degradation mechanisms of LiNi0. 5Co0. 2Mn0. 3O2 cathode material in lithium ion batteries. Advanced Energy Materials 2014, 4 (1), 1300787.
    30. Liu, W.; Oh, P.; Liu, X.; Lee, M. J.; Cho, W.; Chae, S.; Kim, Y.; Cho, J., Nickel‐rich layered lithium transition‐metal oxide for high‐energy lithium‐ion batteries. Angewandte Chemie International Edition 2015, 54 (15), 4440-4457.
    31. Zhang, H.; May, B. M.; Omenya, F.; Whittingham, M. S.; Cabana, J.; Zhou, G., Layered oxide cathodes for Li-ion batteries: oxygen loss and vacancy evolution. Chemistry of Materials 2019, 31 (18), 7790-7798.
    32. Jung, R.; Metzger, M.; Maglia, F.; Stinner, C.; Gasteiger, H. A., Chemical versus electrochemical electrolyte oxidation on NMC111, NMC622, NMC811, LNMO, and conductive carbon. The journal of physical chemistry letters 2017, 8 (19), 4820-4825.
    33. Jung, R.; Strobl, P.; Maglia, F.; Stinner, C.; Gasteiger, H. A., Temperature dependence of oxygen release from LiNi0. 6Mn0. 2Co0. 2O2 (NMC622) cathode materials for Li-ion batteries. Journal of The Electrochemical Society 2018, 165 (11), A2869.
    34. Bak, S.-M.; Nam, K.-W.; Chang, W.; Yu, X.; Hu, E.; Hwang, S.; Stach, E. A.; Kim, K.-B.; Chung, K. Y.; Yang, X.-Q., Correlating structural changes and gas evolution during the thermal decomposition of charged Li x Ni0. 8Co0. 15Al0. 05O2 cathode materials. Chemistry of Materials 2013, 25 (3), 337-351.
    35. Bak, S.-M.; Hu, E.; Zhou, Y.; Yu, X.; Senanayake, S. D.; Cho, S.-J.; Kim, K.-B.; Chung, K. Y.; Yang, X.-Q.; Nam, K.-W., Structural changes and thermal stability of charged LiNi x Mn y Co z O2 cathode materials studied by combined in situ time-resolved XRD and mass spectroscopy. ACS applied materials & interfaces 2014, 6 (24), 22594-22601.
    36. Liu, X.; Ren, D.; Hsu, H.; Feng, X.; Xu, G.-L.; Zhuang, M.; Gao, H.; Lu, L.; Han, X.; Chu, Z., Thermal runaway of lithium-ion batteries without internal short circuit. Joule 2018, 2 (10), 2047-2064.
    37. Xiao, B.; Sun, X., Surface and subsurface reactions of lithium transition metal oxide cathode materials: an overview of the fundamental origins and remedying approaches. Advanced Energy Materials 2018, 8 (29), 1802057.
    38. Ohzuku, T.; Ueda, A.; Nagayama, M.; Iwakoshi, Y.; Komori, H., Comparative study of LiCoO2, LiNi12Co12O2 and LiNiO2 for 4 volt secondary lithium cells. Electrochimica Acta 1993, 38 (9), 1159-1167.
    39. Cho, D.-H.; Jo, C.-H.; Cho, W.; Kim, Y.-J.; Yashiro, H.; Sun, Y.-K.; Myung, S.-T., Effect of residual lithium compounds on layer Ni-rich Li [Ni0. 7Mn0. 3] O2. Journal of The Electrochemical Society 2014, 161 (6), A920.
    40. Maleki Kheimeh Sari, H.; Li, X., Controllable cathode–electrolyte interface of Li [Ni0. 8Co0. 1Mn0. 1] O2 for lithium ion batteries: a review. Advanced Energy Materials 2019, 9 (39), 1901597.
    41. Manthiram, A.; Song, B.; Li, W., A perspective on nickel-rich layered oxide cathodes for lithium-ion batteries. Energy Storage Materials 2017, 6, 125-139.
    42. Zhan, C.; Wu, T.; Lu, J.; Amine, K., Dissolution, migration, and deposition of transition metal ions in Li-ion batteries exemplified by Mn-based cathodes–a critical review. Energy & Environmental Science 2018, 11 (2), 243-257.
    43. Heider, U.; Oesten, R.; Jungnitz, M., Challenge in manufacturing electrolyte solutions for lithium and lithium ion batteries quality control and minimizing contamination level. Journal of Power Sources 1999, 81, 119-122.
    44. Aurbach, D., Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries. Journal of Power Sources 2000, 89 (2), 206-218.
    45. Kondrakov, A. O.; Schmidt, A.; Xu, J.; Geßwein, H.; Mönig, R.; Hartmann, P.; Sommer, H.; Brezesinski, T.; Janek, J. r., Anisotropic lattice strain and mechanical degradation of high-and low-nickel NCM cathode materials for Li-ion batteries. The journal of physical chemistry C 2017, 121 (6), 3286-3294.
    46. Ryu, H.-H.; Park, K.-J.; Yoon, C. S.; Sun, Y.-K., Capacity fading of Ni-rich Li [Ni x Co y Mn1–x–y] O2 (0.6≤ x≤ 0.95) cathodes for high-energy-density lithium-ion batteries: bulk or surface degradation? Chemistry of materials 2018, 30 (3), 1155-1163.
    47. Mao, Y.; Wang, X.; Xia, S.; Zhang, K.; Wei, C.; Bak, S.; Shadike, Z.; Liu, X.; Yang, Y.; Xu, R., High‐voltage charging‐induced strain, heterogeneity, and micro‐cracks in secondary particles of a nickel‐rich layered cathode material. Advanced Functional Materials 2019, 29 (18), 1900247.
    48. Tsai, P.-C.; Wen, B.; Wolfman, M.; Choe, M.-J.; Pan, M. S.; Su, L.; Thornton, K.; Cabana, J.; Chiang, Y.-M., Single-particle measurements of electrochemical kinetics in NMC and NCA cathodes for Li-ion batteries. Energy & Environmental Science 2018, 11 (4), 860-871.
    49. Xu, Y.; Hu, E.; Zhang, K.; Wang, X.; Borzenets, V.; Sun, Z.; Pianetta, P.; Yu, X.; Liu, Y.; Yang, X.-Q., In situ visualization of state-of-charge heterogeneity within a LiCoO2 particle that evolves upon cycling at different rates. ACS Energy Letters 2017, 2 (5), 1240-1245.
    50. Yan, P.; Zheng, J.; Gu, M.; Xiao, J.; Zhang, J.-G.; Wang, C.-M., Intragranular cracking as a critical barrier for high-voltage usage of layer-structured cathode for lithium-ion batteries. Nature communications 2017, 8 (1), 1-9.
    51. Yan, P.; Zheng, J.; Chen, T.; Luo, L.; Jiang, Y.; Wang, K.; Sui, M.; Zhang, J.-G.; Zhang, S.; Wang, C., Coupling of electrochemically triggered thermal and mechanical effects to aggravate failure in a layered cathode. Nature communications 2018, 9 (1), 1-8.
    52. Min, K.; Cho, E., Intrinsic origin of intra-granular cracking in Ni-rich layered oxide cathode materials. Physical Chemistry Chemical Physics 2018, 20 (14), 9045-9052.
    53. Yano, A.; Shikano, M.; Ueda, A.; Sakaebe, H.; Ogumi, Z., LiCoO2 degradation behavior in the high-voltage phase transition region and improved reversibility with surface coating. Journal of The Electrochemical Society 2016, 164 (1), A6116.
    54. Zhu, C.; Liu, J.; Yu, X.; Zhang, Y.; Jiang, X.; Dong, P.; Zhang, Y., Novel fabrication of Li4Ti5O12 coated LiMn2O4 nanorods as cathode materials with long-term cyclic stability at high ambient temperature. Int. J. Electrochem. Sci 2019, 14, 7673-7683.
    55. Du, K.; Xie, H.; Hu, G.; Peng, Z.; Cao, Y.; Yu, F., Enhancing the thermal and upper voltage performance of Ni-rich cathode material by a homogeneous and facile coating method: spray-drying coating with nano-Al2O3. ACS applied materials & interfaces 2016, 8 (27), 17713-17720.
    56. Xu, G.; Liu, Z.; Zhang, C.; Cui, G.; Chen, L., Strategies for improving the cyclability and thermo-stability of LiMn 2 O 4-based batteries at elevated temperatures. Journal of Materials Chemistry A 2015, 3 (8), 4092-4123.
    57. Li, J.; Liu, Y.; Yao, W.; Rao, X.; Zhong, S.; Qian, L., Li2TiO3 and Li2ZrO3 co-modification LiNi0. 8Co0. 1Mn0. 1O2 cathode material with improved high-voltage cycling performance for lithium-ion batteries. Solid State Ionics 2020, 349, 115292.
    58. Wen, X.; Liang, K.; Tian, L.; Shi, K.; Zheng, J., Al2O3 coating on Li1. 256Ni0. 198Co0. 082Mn0. 689O2. 25 with spinel-structure interface layer for superior performance lithium ion batteries. Electrochimica Acta 2018, 260, 549-556.
    59. Myung, S.-T.; Izumi, K.; Komaba, S.; Sun, Y.-K.; Yashiro, H.; Kumagai, N., Role of alumina coating on Li− Ni− Co− Mn− O particles as positive electrode material for lithium-ion batteries. Chemistry of Materials 2005, 17 (14), 3695-3704.
    60. Zeng, X.; Jian, T.; Lu, Y.; Yang, L.; Ma, W.; Yang, Y.; Zhu, J.; Huang, C.; Dai, S.; Xi, X., Enhancing high-temperature and high-voltage performances of single-crystal LiNi0. 5Co0. 2Mn0. 3O2 cathodes through a LiBO2/LiAlO2 dual-modification strategy. ACS Sustainable Chemistry & Engineering 2020, 8 (16), 6293-6304.
    61. Guan, P.; Zhou, L.; Yu, Z.; Sun, Y.; Liu, Y.; Wu, F.; Jiang, Y.; Chu, D., Recent progress of surface coating on cathode materials for high-performance lithium-ion batteries. Journal of Energy Chemistry 2020, 43, 220-235.
    62. Cho, W.; Kim, S.-M.; Song, J. H.; Yim, T.; Woo, S.-G.; Lee, K.-W.; Kim, J.-S.; Kim, Y.-J., Improved electrochemical and thermal properties of nickel rich LiNi0. 6Co0. 2Mn0. 2O2 cathode materials by SiO2 coating. Journal of Power Sources 2015, 282, 45-50.
    63. Kim, G.-Y.; Park, Y. J.; Jung, K. H.; Yang, D.-J.; Lee, J. W.; Kim, H.-G., High-rate, high capacity ZrO 2 coated Li [Li 1/6 Mn 1/2 Co 1/6 Ni 1/6] O 2 for lithium secondary batteries. Journal of Applied Electrochemistry 2008, 38 (10), 1477-1481.
    64. Fey, G. T.-K.; Muralidharan, P.; Lu, C.-Z.; Cho, Y.-D., Surface modification of LiNi0. 8Co0. 2O2 with La2O3 for lithium-ion batteries. Solid State Ionics 2005, 176 (37-38), 2759-2767.
    65. Min, K.; Park, K.; Park, S. Y.; Seo, S.-W.; Choi, B.; Cho, E., Residual Li reactive coating with Co3O4 for superior electrochemical properties of LiNi0. 91Co0. 06Mn0. 03O2 cathode material. Journal of The Electrochemical Society 2018, 165 (2), A79.
    66. Kim, H.; Jang, J.; Byun, D.; Kim, H. S.; Choi, W., Selective TiO2 Nanolayer Coating by Polydopamine Modification for Highly Stable Ni‐Rich Layered Oxides. ChemSusChem 2019, 12 (24), 5253-5264.
    67. Kong, J.-Z.; Ren, C.; Tai, G.-A.; Zhang, X.; Li, A.-D.; Wu, D.; Li, H.; Zhou, F., Ultrathin ZnO coating for improved electrochemical performance of LiNi0. 5Co0. 2Mn0. 3O2 cathode material. Journal of Power Sources 2014, 266, 433-439.
    68. Xiong, X.; Wang, Z.; Yin, X.; Guo, H.; Li, X., A modified LiF coating process to enhance the electrochemical performance characteristics of LiNi0. 8Co0. 1Mn0. 1O2 cathode materials. Materials Letters 2013, 110, 4-9.
    69. Cho, W.; Kim, S.-M.; Lee, K.-W.; Song, J. H.; Jo, Y. N.; Yim, T.; Kim, H.; Kim, J.-S.; Kim, Y.-J., Investigation of new manganese orthophosphate Mn3 (PO4) 2 coating for nickel-rich LiNi0. 6Co0. 2Mn0. 2O2 cathode and improvement of its thermal properties. Electrochimica Acta 2016, 198, 77-83.
    70. Son, I. H.; Park, J. H.; Park, S.; Park, K.; Han, S.; Shin, J.; Doo, S.-G.; Hwang, Y.; Chang, H.; Choi, J. W., Graphene balls for lithium rechargeable batteries with fast charging and high volumetric energy densities. Nature communications 2017, 8 (1), 1-11.
    71. Hwang, B.-J.; Hu, S.-K.; Chen, C.-H.; Chen, C.-Y.; Sheu, H.-S., In-situ XRD investigations on structure changes of ZrO2-coated LiMn0. 5Ni0. 5O2 cathode materials during charge. Journal of power sources 2007, 174 (2), 761-765.
    72. Hu, S.-K.; Cheng, G.-H.; Cheng, M.-Y.; Hwang, B.-J.; Santhanam, R., Cycle life improvement of ZrO2-coated spherical LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries. Journal of Power Sources 2009, 188 (2), 564-569.
    73. George, S. M., Atomic layer deposition: an overview. Chemical reviews 2010, 110 (1), 111-131.
    74. Qin, C.; Cao, J.; Chen, J.; Dai, G.; Wu, T.; Chen, Y.; Tang, Y.; Li, A.; Chen, Y., Improvement of electrochemical performance of nickel rich LiNi 0.6 Co 0.2 Mn 0.2 O 2 cathode active material by ultrathin TiO 2 coating. Dalton Transactions 2016, 45 (23), 9669-9675.
    75. Hou, Q.; Cao, G.; Wang, P.; Zhao, D.; Cui, X.; Li, S.; Li, C., Carbon coating nanostructured-LiNi1/3Co1/3Mn1/3O2 cathode material synthesized by chemical vapor deposition method for high performance lithium-ion batteries. Journal of Alloys and Compounds 2018, 747, 796-802.
    76. Wang, F.; Yang, J.; Gao, P.; NuLi, Y.; Wang, J., Morphology regulation and carbon coating of LiMnPO4 cathode material for enhanced electrochemical performance. Journal of Power Sources 2011, 196 (23), 10258-10262.
    77. Zhang, X.; Xu, Y.; Zhang, H.; Zhao, C.; Qian, X., Structure and cycle stability of SrHPO4-coated LiMn2O4 cathode materials for lithium-ion batteries. Electrochimica Acta 2014, 145, 201-208.
    78. Yang, C.-C.; Jang, J.-H.; Jiang, J.-R., Study of electrochemical performances of lithium titanium oxide–coated LiFePO4/C cathode composite at low and high temperatures. Applied energy 2016, 162, 1419-1427.
    79. Islam, M.; Ur, S.-C.; Yoon, M.-S., Improved performance of porous LiFePO4/C as lithium battery cathode processed by high energy milling comparison with conventional ball milling. Current Applied Physics 2015, 15 (4), 541-546.
    80. Ehi-Eromosele, C. O.; Indris, S.; Melinte, G.; Bergfeldt, T.; Ehrenberg, H., Solution Combustion-Mechanochemical Syntheses of Composites and Core-Shell x Li2MnO3·(1–x) LiNi0. 5Mn0. 3Co0. 2O2 (0≤ x≤ 0.7) Cathode Materials for Lithium-Ion Batteries. ACS Sustainable Chemistry & Engineering 2020, 8 (50), 18590-18605.
    81. Zhong, Z.; Chen, L.; Zhu, C.; Ren, W.; Kong, L.; Wan, Y., Nano LiFePO4 coated Ni rich composite as cathode for lithium ion batteries with high thermal ability and excellent cycling performance. Journal of Power Sources 2020, 464, 228235.
    82. Bragg, W. H.; Bragg, W. L., The reflection of X-rays by crystals. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 1913, 88 (605), 428-438.
    83. Epp, J., X-ray diffraction (XRD) techniques for materials characterization. In Materials characterization using nondestructive evaluation (NDE) methods, Elsevier: 2016; pp 81-124.
    84. Inkson, B., Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for materials characterization. In Materials characterization using nondestructive evaluation (NDE) methods, Elsevier: 2016; pp 17-43.
    85. Lozeman, J. J. A.; Fuhrer, P.; Olthuis, W.; Odijk, M., Spectroelectrochemistry, the future of visualizing electrode processes by hyphenating electrochemistry with spectroscopic techniques. Analyst 2020, 145 (7), 2482-2509.
    86. Hsin-Fu, H. In-situ Raman Investigation on Lithium-rich Layered Cathode Materials and STOBA Additives upon Cycling. NTUST thesis, 2015.
    87. University, B. Charging Lithium-ion. 2018.
    88. Warwick, T. Battery Testing with EIS (Electrochemical Impedance Spectroscopy). Blue scientific, 2015.
    89. Zou, L.; He, Y.; Liu, Z.; Jia, H.; Zhu, J.; Zheng, J.; Wang, G.; Li, X.; Xiao, J.; Liu, J., Unlocking the passivation nature of the cathode–air interfacial reactions in lithium ion batteries. Nature communications 2020, 11 (1), 1-8.
    90. Zhang, Y.; Sun, X.; Cao, D.; Gao, G.; Yang, Z.; Zhu, H.; Wang, Y., Self-Stabilized LiNi0. 8Mn0. 1Co0. 1O2 in Thiophosphate-based All-Solid-State Batteries through Extra LiOH. Energy Storage Materials 2021.
    91. Verdier, S.; El Ouatani, L.; Dedryvere, R.; Bonhomme, F.; Biensan, P.; Gonbeau, D., XPS study on Al2O3-and AlPO4-coated LiCoO2 cathode material for high-capacity Li ion batteries. Journal of The Electrochemical Society 2007, 154 (12), A1088.
    92. Verma, P.; Maire, P.; Novák, P., A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochimica Acta 2010, 55 (22), 6332-6341.
    93. Fang, S.; Jackson, D.; Dreibelbis, M. L.; Kuech, T. F.; Hamers, R. J., Anode-originated SEI migration contributes to formation of cathode-electrolyte interphase layer. Journal of Power Sources 2018, 373, 184-192.
    94. Li, L.-j.; Li, X.-h.; Wang, Z.-x.; Guo, H.-j.; Yue, P.; Chen, W.; Wu, L., A simple and effective method to synthesize layered LiNi0. 8Co0. 1Mn0. 1O2 cathode materials for lithium ion battery. Powder Technology 2011, 206 (3), 353-357.
    95. Wang, D.; Li, X.; Wang, Z.; Guo, H.; Huang, Z.; Kong, L.; Ru, J., Improved high voltage electrochemical performance of Li2ZrO3-coated LiNi0. 5Co0. 2Mn0. 3O2 cathode material. Journal of Alloys and Compounds 2015, 647, 612-619.
    96. Jan, S. S.; Nurgul, S.; Shi, X.; Xia, H.; Pang, H., Improvement of electrochemical performance of LiNi0. 8Co0. 1Mn0. 1O2 cathode material by graphene nanosheets modification. Electrochimica Acta 2014, 149, 86-93.
    97. Kajiyama, A.; Takada, K.; Inada, T.; Kouguchi, M.; Kondo, S.; Watanabe, M., Layered Li-Co-Mn oxide as a high-voltage positive electrode material for lithium batteries. Journal of The Electrochemical Society 2001, 148 (9), A981.

    無法下載圖示 全文公開日期 2024/09/02 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE