簡易檢索 / 詳目顯示

研究生: 鄭宗炘
TSUNG-HSIN CHENG
論文名稱: 受三角錐控制之圓柱與壁面交界流
Modulating Flow around Juncture of a Circular Cylinder Mounted Normal to a Flat Plate by an Upstream Tetrahedron
指導教授: 黃榮芳
Rong-Fung Huang
口試委員: 許清閔
Ching-Min Hsu
陳佳
Jia-Kun Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 397
中文關鍵詞: 質點影像測速儀馬蹄形渦漩控制壁面剪應力
外文關鍵詞: PIV, juncture flow, control horseshoe vortex, shear force at wall
相關次數: 點閱:209下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 針對一圓柱與壁面交界處,放置不同幾何參數之三角錐於圓柱與壁面上游交界處,在一拖曳式水槽中使用實驗方法來探討受三角錐控制之圓柱與壁面交接處上游與下游的流場特徵。使用雷射光頁輔助質點軌跡法觀察流場圓柱與壁面交接處上游與下游的垂直對稱面與水平面的特徵行為,再藉由質點影像測速儀量測速度場,轉換為流線,並計算壁面剪應力。在三角錐長度與雷諾數的域面上,圓柱與壁面上游交界處的流場呈現五種特徵模態,分別為「渦漩」、「不穩定渦漩」、「逆向流動」、「過渡」及「順向流動」。渦漩模態的流場特徵為數目固定的馬蹄形渦漩;不穩定渦漩模態的流場特徵呈現數目不固定的馬蹄形渦漩;逆向流動模態時,靠近壁面處流體呈現逆向流動的行為;過渡模態時,靠近壁面處的流體隨機出現逆向流動或順向流動。順向流動模態時,靠近壁面處流體呈現順向流動的行為。當圓柱上游形成馬蹄形渦漩時,最大剪應力產生在馬蹄形渦漩處。使用適當設計的三角錐可消除圓柱上游的馬蹄形渦漩,降低壁面剪應力,因而改善馬蹄形渦漩對圓柱根部的沖刷效應。在圓柱尾流垂直面上,雷諾數低於1000時,流場特徵結構為一源點;在雷諾數高於1000時,流場特徵結構為一分歧線。最大剪應力發生在源點或分歧線與圓柱之間。在圓柱下游水平面上,長時間之平均速度及流線圖中主要的流場特徵為兩顆反向旋轉之渦漩。分析尾流區流速隨時間之變化,研究不同流場模態對尾流渦漩逸放頻率之影響,發現接近圓柱底部之水平面上觀察不到渦漩逸放之現象。


    Flow around juncture of a circular cylinder mounted normal to a flat plate modulated by a tetrahedron installed around the upstream corner of the cylinder were investigated experimentally in a water towing tank. The flow patterns were studied by particle-tracking flow visualization method. The flow velocities were measured by particle image velocimetry (PIV). The streamlines and wall shear stresses were calculated using the measured flow velocity data. Five characteristic flow modes (vortical flow, unsteady vortical flow, reverse flow, transition flow, and forward flow) were observed in the domain of Reynolds number and tetrahedron length at fixed tetrahedron angles. Horse-shoe vortices wrapping from the upstream region and extending to the downstream area of the circular cylinder appeared in the vortical flow mode. Flow went upstream was found in the reverse flow mode. Smooth flow went downstream without any vortices or reverse flow were observed in the forward flow mode. The calculated wall shear stresses showed peak values at the locations of vortices. The reverse and forward flow modes did not present large local wall shear stresses, which denoted a success of flow control by the tetrahedron. At low Reynolds number (e.g., 500), no vortex shedding was observed in the wake near the wall. At mid and high Reynolds numbers (e.g., 1600, 2500, 5000), regular vortex shedding with a Strouhal number about 0.2 appeared in the wake near the wall.

    摘要 i Abstract ii 誌謝 iii 目錄 iv 符號索引 xi 表圖索引 xiii 第一章 緒論 1 1.1研究動機 1 1.2文獻回顧 2 1.2.1橋墩沖刷相關研究 2 1.2.2馬蹄型渦流相關研究 3 1.2.3前期研究 5 第二章實驗設備、儀器與方法 6 2.1 實驗設備 6 2.1.1拖曳是水槽 6 2.1.2圓柱模型 6 2.2 三角錐控制法 7 2.3 水槽儀器控制方法 8 2.3.1 馬達控制器 8 2.3.2 觸發訊號控制 8 2.4 實驗儀器及方法 9 2.4.1雷射光頁 9 2.4.2數位相機 9 2.4.3偏光鏡 9 2.4.4無線定時快門線 10 2.4.5質點特性分析 10 2.4.6質點軌跡流場觀察法(PTFV) 10 2.4.7質點影像速度儀(PIV) 11 第三章 圓柱與壁面交接處上游垂直面流場特徵 17 3.1 圓柱與壁面交界處上游垂直面之流場模態特徵 17 3.1.1圓柱與壁面交界處上游垂直面隨時間衍化之可視化 17 3.1.2圓柱與壁面交界處上游垂直面之手繪示意圖 19 3.1.3圓柱與壁面交界處上游垂直面之流場特徵模態 20 3.2 圓柱與壁面交界處上游垂直面受三角錐控制之流場模態特 徵 21 3.2.1圓柱與壁面交界處上游垂直面受L/D = 0.3三角錐控制隨時間衍化之可視化 21 3.2.2圓柱與壁面交界處上游垂直面受L/D = 0.3 三角錐控制隨時間衍化之手繪示意圖 23 3.2.3圓柱與壁面交界處上游垂直面受L/D = 0.75三角錐控制隨時間衍化之可視化 23 3.2.4圓柱與壁面交界處上游垂直面受L/D = 0.75 三角錐控制隨時間衍化之手繪示意圖 25 3.2.5圓柱與壁面上游交界處受L/D = 1.2三角錐控制隨時間衍化之可視化 25 3.2.6 圓柱與壁面交界處上游垂直面受L/D = 1.2 三角錐控制隨時間衍化之手繪示意圖 26 3.3圓柱與壁面交界處上游垂直面的量化流場特徵 27 3.3.1圓柱與壁面交界處上游垂直面之速度與流線圖 27 3.3.2 圓柱與壁面交界處上游垂直面之流場拓樸分析 28 3.4圓柱與壁面交界處上游垂直面受三角錐流場的量化流場特徵 30 3.4.1圓柱與壁面交界處上游垂直面受L/D = 0.3三角錐控制之速度與流線圖 30 3.4.2圓柱與壁面交界處上游垂直面受 L/D = 0.75三角錐控制之速度與流線圖 32 3.4.3圓柱與壁面交界處上游垂直面受L/D = 1.2三角錐控制之速度與流線圖 33 3.5壁面剪應力 34 3.5.1圓柱與壁面交界處上游垂直面之剪應力分佈 34 3.5.2圓柱與壁面交界處上游垂直面受L/D = 0.3三角錐控制之剪應力分佈 35 3.5.3圓柱與壁面交界處上游垂直面受L/D = 0.75三角錐控制之剪應力分佈 36 3.5.4圓柱與壁面交界處上游垂直面受L/D = 1.2三角錐控制之剪應力分佈 37 3.5.5 圓柱與壁面交界處上游垂直面與受三角錐控制在速度在ReD = 500之剪應力分佈 38 3.5.6 圓柱與壁面交界處上游垂直面與受三角錐控制在速度在ReD = 1600之剪應力分佈 38 3.5.7圓柱與壁面交界處上游垂直面與受三角錐控制在速度在ReD = 2500之剪應力分佈 39 3.5.8圓柱與壁面交界處上游垂直面與受三角錐控制在速度在ReD = 5000之剪應力分佈 39 3.6渦度分析 39 3.6.1圓柱與壁面交界處上游垂直面之渦度 40 3.6.2圓柱與壁面交界處上游垂直面受L/D = 0.3三角錐控制之渦度 40 3.6.3圓柱與壁面交界處上游垂直面受L/D = 0.75三角錐控制之渦度 41 3.6.3 圓柱與壁面交界處上游垂直面受L/D = 1.2三角錐控制之渦度 42 3.7 結果比較與討論 42 第四章 圓柱與壁面交界處下游垂直面流場特徵 46 4.1圓柱與壁面交界處下游垂直面隨時間衍化之可視化 46 4.2圓柱與壁面交界處下游垂直面受三角錐控制流場模態特徵 48 4.2.1圓柱與壁面交界處下游垂直面受L/D = 0.3三角錐控制時間衍化之可視化 48 4.2.2圓柱與壁面交界處下游垂直面受L/D = 0.75三角錐控制時間衍化之可視化 50 4.2.3圓柱與壁面交界處下游垂直面受L/D = 1.2三角錐控制時間衍化之可視化 51 4.3圓柱與壁面交界處下游垂直面的量化流場特徵 53 4.4圓柱與壁面交界處下游垂直面受三角錐控控制流場的量化流場特徵 54 4.4.1圓柱與壁面交界處下游垂直面受L/D = 0.3三角錐控制量化流場特徵 54 4.4.2圓柱與壁面交界處下游垂直面受L/D = 0.75三角錐控制流場特徵 55 4.4.3圓柱與壁面交界處下游垂直面受L/D = 1.2三角錐控制流場特徵 56 4.5壁面剪應力 57 4.5.1圓柱與壁面交界處下游垂直面與受三角錐控制在速度在ReD = 500之剪應力分佈 57 4.5.2 圓柱與壁面交界處下游垂直面與受三角錐控制在速度在ReD = 1600之剪應力分佈 57 4.5.3圓柱與壁面交界處下游垂直面與受三角錐控制在速度在ReD = 2500之剪應力分佈 58 4.5.4圓柱與壁面交界處下游垂直面與受三角錐控制在速度在ReD = 5000之剪應力分佈 59 4.6結果比較與討論 59 第五章 圓柱與壁面交接處水平面流場特徵 61 5.1圓柱與壁面交界處上游水平面隨時間衍化之可視化 61 5.2圓柱與壁面交界處上游水平面受三角錐控制隨時間衍化之可視化 66 5.2.1 圓柱與壁面交界處上游水平面受L/D = 0.3三角錐控制隨時間衍化之可視化 66 5.2.2 圓柱與壁面交界處上游水平面受L/D = 0.75三角錐控制之隨時間衍化之可視化 68 5.2.3 圓柱與壁面交界處上游水平面受L/D = 1.2三角錐控制之隨時間衍化之可視化 70 5.3圓柱與壁面交界處上游水平面的量化流場特徵 71 5.4圓柱與壁面交界處上游水平面受三角錐控制的量化流場特徵 72 5.4.1圓柱與壁面交界處上游水平面受L/D = 0.3三角錐控制之量化流場特徵 72 5.4.2圓柱與壁面交界處上游水平面受L/D = 0.75三角錐控制之量化流場特徵 72 5.4.3圓柱與壁面交界處上游水平面受L/D = 1.2三角錐控制之量化流場特徵 73 5.5圓柱與壁面交界處下游水平面隨時間衍化之可視化 73 5.6圓柱與壁面交界處下游水平面受三角錐控制隨時間衍化之可視化 78 5.6.1 圓柱與壁面交界處下游水平面受L/D = 0.3三角錐控制隨時間衍化之可視化 78 5.6.2 圓柱與壁面交界處下游水平面受L/D = 0.75三角錐控制隨時間衍化之可視化 82 5.6.3圓柱與壁面交界處下游水平面受L/D = 1.2三角錐控制隨時間衍化之可視化 85 5.7圓柱與壁面交界處下游水平面之量化流場特徵 89 5.8圓柱與壁面交界處下游水平面受三角錐控制之量化流場特徵 92 5.8.1 圓柱與壁面交界處下游水平面L/D = 0.3三角錐控制之量化流場特徵 92 5.8.2 圓柱與壁面交界處下游水平面L/D = 0.75三角錐控制之量化流場特徵 94 5.8.3 圓柱與壁面交界處下游水平面L/D = 1.2三角錐控制之量化流場特徵 96 5.8.4 圓柱與壁面交界處下游水平面與受三角錐控制之渦漩長度比較 99 5.9尾流渦旋逸放分析 99 5.9.1 圓柱與壁面交界處下游水平面之尾流渦旋逸放分析 99 5.9.2 圓柱與壁面交界處下游水平面L/D = 0.3三角錐控制之尾流渦旋逸放分析 103 5.9.3 圓柱與壁面交界處下游水平面L/D = 0.75三角錐控制之尾流渦旋逸放分析 107 5.9.4 圓柱與壁面交界處下游水平面L/D = 1.2三角錐控制之尾流渦旋逸放分析 111 5.10結果比較與討論 114 第六章 結論與建議 117 6.1結論 117 6.2建議 118 參考文獻 120

    [1] 周郁芳、陳志明、賴桂文、林永敏:「八八水災橋梁受損實例探討」,水利技師工會聯合資訊網,水利會訊,會訊第十三期,台灣,中華民國,2010。
    [2] 陳賜賢:「河川橋梁破壞原因探討—以莫拉克談風雙園大橋為例」,水利技師工會聯合資訊網,水利會訊,會訊第十四期,台灣,中華民國,2011。
    [3] Huang, R. F., Hsu, C. M., and Lin, W. C., “Flow characteristics around juncture of a circular cylinder mounted normal to a flat plate,” Experimental Thermal and Fluid Science, Vol. 55, May 2014, pp, 187-199.
    [4] Huang, R. F., Hsu, C. M., and Chen, C., “Effects of an upstream tetrahedron on the circular cyinder-flat plate juncture flow,” Experiments in Fluids, Vol. 56, No. 7, Jul. 2015, pp, 146-160.
    [5] Dargahi, B., “Controlling mechanism of local scouring,” Journal of Hydraulic Engineering, Vol. 116, No. 10, 1990, pp. 1197-1214
    [6] Devenport, W. J., Agarwal, N. K., Dewitz, M. B., and Simpson, R. L., “Effects of a leading-edge fillet on the flow past an appendage-body junction,” AIAA Journal, Vol. 30, No. 9, 1992, pp. 2177-2183.
    [7] Ahmed, F. and Rajaratnam, N., ”Flow around bridge piers,” Journal of Hydraulic Engineering, Vol. 124, No. 3, 1998, pp. 288-300.
    [8] Bruce, W. M. and Arved, J. R., ” Flow characteristics in local scour at bridge piers,” Journal of Hydraulic Research, Vol. 15, No. 4, 1977, pp. 373-380.
    [9] Melville, B. and Chiew, Y., ”Time scale for local scour at bridge piers,” Journal of Hydraulic Engineering, Vol. 125, No. 1, 1999, pp. 59-65.
    [10] Baker, C. J., “The laminar horseshoe vortex,” Journal of Fluid Mechanics, Vol. 95, Part 2, 1979, pp. 347-367.
    [11] Baker, C. J., “The position of points of maximum and minimum shear stress upstream of cylinders mounted normal to flat plates,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 18, No. 3, 1985, pp. 263-274.
    [12] Hunt, J. C. R., Abell, C. J., Peterka, J. A., and Woo, H., “Kinematical studies of the flows around free or surface-mounted obstacles; applying topology to flow visualization,” Journal of Fluid Mechanics, Vol. 86, Part 1, 1978, pp. 179-200.
    [13] Chou, J. H. and Chao, S. Y., ” Branching of a horseshoe vortex around surface-mounted rectangular cylinders,” Experiments in Fluids, Vol. 28, No. 5, 2000, pp. 394-402
    [14] Roger, L. S., ”Junction flows,” Annual Review of Fluid Mechanics, Vol. 33, 2001, pp. 415-443.
    [15] Wei, Q. D., Cheng, G., and Du, X. D., “An Experimental study on the structure of juncture flows,” Journal of Visualization, Vol. 3, No. 4, 2001, pp. 341-348.
    [16] Sumner, D., Heseltine, J. L., and Dansereau, O. J. P., “Wake structure of a finite circular cylinder of small aspect ratio,” Experiments in Fluids, Vol. 37, No. 5, 2004, pp. 720-730.
    [17] Pattenden, R. J., Turnock, S. R., and Zhang, X., “Measurements of the flow over a low-aspect-ratio cylinder mounted on a ground plane,” Experiments in Fluids, Vol. 39, No. 1, 2005, pp. 10-21.
    [18] Wei, Q. D., Wang, J. M., Chen, G., Lu, Z. B., and Bi, W. T., “Modification of junction flows by altering the section shapes of the cylinders,” Journal of Visualization, Vol. 11, No. 2, 2008, pp. 115-124.
    [19] Richard, C. F. and John, H. S., Fundamentals of Air Pollution Engineering, Prentice Hall, 1988, pp. 290-357.
    [20] Lighthill, M. J., Laminar Boundary Layer, Ed. Rosenhead, L., Oxford University, 1963, pp. 44-88.
    [21] Perry, A. E. and Fairlie, B. D., “Critical points in flow patterns,” Advances in Geophysics. Vol. 18, Part B, 1975, pp. 299-315.
    [22] Perry, A. E., Chong M. S., and Lim, T. T., “The vortex-shedding process behind two-dimensional bluff bodies,” Journal of Fluid Mechanics, Vol. 116, 1982, pp. 77-90.
    [23] Lyn, D. and Rodi, W., “The flapping shear layer formed by flow separation from the forward corner of square cylinder,” Journal of Fluid Mechanics, Vol. 267, 1994, pp. 353-376.
    [24] Rodríguez, M. y. D., Romero-Méndez R., Ramos-Paláu M., and Pérez-Gutiérrez F. G., ” The laminar horseshoe vortex upstream of a short-cylinder confined in a channel formed by a pair of parallel plates,” Journal of Visualization, Vol. 9, No. 3, 2006, pp. 309-318.
    [25] Lienhard, J. H., Synopsis of Lift, Drag, and Vortex Frequency Data for Rigid Circular Cylinders, Washington State University, 1966, pp. 3-10.
    [26] Wang, J. M., Bi, W. T., and Wei, Q. D., “Effects of an upstream inclined rod on the circular cylinder–flat plate junction flow,” Experiments in Fluids, Vol. 46, No. 6, 2009, pp. 1093-1104.
    [27] Kairouz, K. A. and Rahai, H. R.,” Turbulent junction flow with an upstream ribbed surface,” International Journal of Heat and Fluid Flow, Vol. 26, No. 5, 2005, pp. 771-779.
    [28] Seal, C. V. and Smith, C. R.,” The control of turbulent end-wall boundary layers using surface suction,” Experiments in Fluids, Vol. 27, No. 6, 1997, pp. 484-496.

    無法下載圖示 全文公開日期 2021/07/07 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE