簡易檢索 / 詳目顯示

研究生: Siva Ramalingam
Siva Ramalingam
論文名稱: 有限局限噴嘴之連續噴流衝擊平板時的流場特徵
Flow characteristics of continuous jet impingement on a flat plate using a finite confined nozzle
指導教授: 黃榮芳
Rong-Fung Huang
口試委員: LE MINH DUC
LE MINH DUC
CHING MIN HSU
CHING MIN HSU
RONG FUNG HUANG
RONG FUNG HUANG
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 190
中文關鍵詞: Continuous impinging jetwall jetPIVLaser assisted Flow visualization
外文關鍵詞: Continuous impinging jet, wall je, PIV, Laser assisted Flow visualization
相關次數: 點閱:287下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 使用有限尺寸之受局限噴嘴形成連續噴流衝擊平板,在不同的出口至平板距離及噴流雷諾數條件下,使用實驗方法研究衝擊噴流的流場特徵。使用雷射輔助煙霧流場可視化技術觀察衝擊噴流中心平面上的特徵流場照片;利用熱線風速儀量測剪流層之不穩定性的瞬時速度;藉由質點影像速度儀獲得的流場的平均速度場,分析衝擊噴流的速度向量、流線、渦度輪廓及速度分佈;使用壓力轉換器量測平板上方分佈的壓力孔,記錄受噴流衝擊之壁面上的衝擊壓力。根據觀察流場圖片,在不同的噴流雷諾數範圍內,可以辨識出三種特徵流場模態。在低噴流雷諾數時,流場特徵為層流渦漩流模態,衝擊噴流的行為是兩個軸對稱的層流環狀渦漩。在中噴流雷諾數時,流場特徵為過渡流動模態,噴流衝擊平面後由軸向往徑向偏折,然後沿著徑向往外流動,在衝擊噴流上沒有渦漩結構形成。在高雷諾數時,流場特徵為紊流渦漩流模態,平板上之噴流之剪流層上形成渦漩,衝擊噴流的特徵行為轉變為兩個軸對稱的紊流環狀渦漩。在紊流渦漩流模態之渦漩的尺寸較層流渦漩流模態小。渦度輪廓圖沿著噴流中心軸呈現軸對稱的輪廓分佈,在中心軸上的渦度值趨於零。當噴流衝擊平板時,噴流的動量在平板上轉換為停滯壓力,所以形成較大的衝擊壓力。


    The flow characteristics of the continuous jet impinging on a flat plate using a finite confined nozzle at various exit-to-plate distances and jet Reynolds number were experimentally investigated. The characteristic flow patterns in the median plane of the impinging jet were examined using the laser-assisted smoke flow visualization technique. The instantaneous velocities of instability in shear-layer were detected by the hot wire anemometer. The time-averaged velocity fields were carried out by particle image velocimetry (PIV) were applied to analyze the velocity vectors, streamline patterns, vorticity contours, and velocity distributions of the impinging jet. The impingement pressure of the impinging jet was determined using the pressure transducer through the pressure tap arrangement at the flat plate. According to the flow patterns observed on the flat plate, three characteristic flow modes are identified within the different ranges of the jet Reynolds number. At low jet Reynolds number, the “Laminar vortical flow” appeared. The impinging jet behaves two axisymmetric laminar vortex rings. At moderate jet Reynolds number, the “transitional flow” appeared. The jet impinges on the flat plate, deflects from the axial direction to radial direction, and then flows outward along the radial direction. No vortical flow structures are formed in the impinging jet. At high jet Reynolds number, the “turbulent vortical flow” appeared. The vortices evolve in the shear layer of the impinging jet on the flat plate. The impinging jet behaves two axisymmetric turbulent vortex rings. The vortex rings in turbulent vortical flow mode are smaller than those in laminar vortical flow mode. The vorticity contour of the impinging jet is distributed symmetrically with respect to the jet axis and the vorticity along the jet axis is zero. As the jet flow impinges the flat plate, the jet momentum is transformed to stagnation pressure on the flat plate so that the impingement pressure is large.
    Keywords: Continuous impinging jet, wall jet, PIV, Laser-assisted Flow visualization

    摘要 i ABSTRACT ii ACKNOWLEDGEMENT iii TABLE OF CONTENTS v NOMENCLATURE vii TABLE CAPTIONS ix FIGURE CAPTIONS x CHAPTER 1 Introduction 1 1.1 Motivation 1 1.2 Literature Survey 3 1.3 Objective and Scope of present work 7 CHAPTER 2 Experimental setup and Methods 8 2.1. Experimental apparatus and setup 8 2.2. Experimental method 9 2.2.1 Jet velocity measurement 9 2.2.2 Flow visualization 10 2.2.3 Hot-wire anemometer velocity measurement 15 2.2.4 PIV measurement 16 2.2.4.1 PIV system software architecture 16 2.2.4.2 PIV system hardware architecture 17 2.2.5 Pressure measurement 18 CHAPTER 3 Characteristics flow behaviors 20 3.1 Characteristics flow patterns 20 3.1.1 Laminar vortical flow regime 20 3.1.2 Transition mode 28 3.1.3 Turbulent vortical flow regime 29 3.2 Characteristics flow regime 31 CHAPTER 4 Time-averaged velocity characteristics 34 4.1 Time-averaged velocity vectors and streamlines patterns 34 4.2 Normalized vorticity contours 44 4.3 Velocity distributions 54 4.3.1 Radial distributions of mean velocity and turbulence intensity properties 54 4.3.2 Axial distributions of mean velocity and turbulence intensity properties 59 4.3.3 The maximum axial velocity distribution along radial direction 65 CHAPTER 5 Shear-layer instability and Impingement pressure measurement 67 5.1 Shear-layer instability 67 5.2 Impingement pressure measurement 69 5.2.1 The maximum pressure distribution on a flat plate 71 CHAPTER 6 Conclusion and Recommendations 72 6.1 Conclusion 72 6.2 Recommendation 74 References 76

    [1] J.W. Gauntner, J.N.B. Livingood, P. Hrycak, Survey of literature on flow characteristics of a single turbulent jet impinging on a flat plate, in: Technical Report, NASA, Washington, D.C., 1970, pp. 1-43.
    [2] S. V. Garimella, “Heat Transfer and Flow Fields in Confined Jet Impingement,” Chapter 7, Annual Review of Heat Transfer, Vol. XI, pp. 413-494, 2000.
    [3] A.M Tahsini, S. Tadayon Mousavi , Parametric Study of Confined Turbulent Impinging Slot Jets upon a Flat Plate, World Academic of Science, Engineering and Technology, International Journal of Aerospace and Mechanical Engineering, vol: 6, 2012, 1220–1224.
    [4] K. Jambunathan, E. Lai, M.A. Moss, B.L. Button, A review of the heat transfer data for single circular jet impingement, International Journal of Heat and Fluid Flow 13 (2) (1992) 106-115...
    [5] Poreh, Michael, Y. G. Tsuei, and Jack E. Cermak. "Investigation of a turbulent radial wall jet." Journal of Applied Mechanics 34.2 (1967): 457-463.
    [6] J. M. F. Vickers, (1959). Heat Transfer Coefficients between Fluid Jets and Normal Surfaces. Behavior of Laminar Impacted Jets. Industrial & Engineering Chemistry, 51(8), 967-972.
    [7] K. J. McNaughton., and C. G. Sinclair. "Submerged jets in short cylindrical flow vessels." Journal of Fluid Mechanics 25.2 (1966): 367-375.
    [8] Janice A Fitzgerald, and Suresh V. Garimella. "A study of the flow field of a confined and submerged impinging jet." International journal of heat and mass transfer 41.8-9 (1998): 1025-1034.
    [9] Ştefan-Mugur Simionescu, et al. "Impinging Air Jets on Flat Surfaces at Low Reynolds Numbers." Energy Procedia 112 (2017): 194-203.
    [10] T. J. Craft, L. J. W. Graham, and Brian Edward Launder. "Impinging jet studies for turbulence model assessment—II. An examination of the performance of four turbulence models." International Journal of Heat and Mass Transfer36.10 (1993): 2685-2697.
    [11] E. Forthmann, Turbulent jet expansion. National Advisory Commitee for Aeronautics, 1936.
    [12] B. A Bradshaw, and M. T. Gee. Turbulent wall jets with and without an external stream. HM Stationery Office, 1962.
    [13] S. Gogineni, and C. Shih. "Experimental investigation of the unsteady structure of a transitional plane wall jet." Experiments in fluids 23.2 (1997): 121-129.
    [14] S. Gogineni, M. Visbal, and C. Shih. "Phase-resolved PIV measurements in a transitional plane wall jet: a numerical comparison." Experiments in fluids 27.2 (1999): 126-136.
    [15] Christopher C. Landreth, and Ronald J. Adrian. "Impingement of a low Reynolds number turbulent circular jet onto a flat plate at normal incidence." Experiments in Fluids 9.1-2 (1990): 74-84.
    [16] M. B Glauert, "The wall jet." Journal of Fluid Mechanics 1.6 (1956): 625-643.
    [17] B. E Launder, and W. Rodi. "The turbulent wall jet." Progress in Aerospace Sciences 19 (1979): 81-128.
    [18] Yang Xu, Li-Hao Feng, and Jin-Jun Wang. "Experimental investigation of a synthetic jet impinging on a fixed wall." Experiments in fluids 54.5 (2013): 1512.
    [19] Gopi Krishnan, and Kamran Mohseni. "An experimental study of a radial wall jet formed by the normal impingement of a round synthetic jet." European Journal of Mechanics-B/Fluids29.4 (2010): 269-277.
    [20] Robert Gardon, and J. Cahit Akfirat. "The role of turbulence in determining the heat-transfer characteristics of impinging jets." International journal of heat and mass transfer 8.10 (1965): 1261-1272.
    [21] Richard C Flagan, and John H. Seinfeld. Fundamentals of air pollution engineering. Courier Corporation, 2012.

    QR CODE