簡易檢索 / 詳目顯示

研究生: 許世勳
Shih-Hsun Hsu
論文名稱: 歧管噴油引擎的缸內PIV動態量測與計算分析
Experimental and Computational Analyses of a PFI Engine
指導教授: 黃榮芳
Rong-Fung Huang
口試委員: 許清閔
Ching-Min Hsu
陳佳
Jia-Kun Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 285
中文關鍵詞: 滾轉運動缸內流場內燃機引擎噴油時機歧管噴油
外文關鍵詞: port-injection
相關次數: 點閱:229下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對一部二閥單缸四行程125 c.c.機車引擎(在此稱為基本引擎),固定引擎轉速於4000 RPM,使用商用套裝計算流體力學(Computational Fluid Dynamics, CFD)軟體CONVERGE對引擎進行計算模擬。藉由改變噴油時機,尋找最佳的油氣濃度分佈、平均燃油粒徑與燃油蒸氣率。並針對引致較差與較佳濃度分佈之噴油時機進行燃燒計算,分析引擎之性能。若噴油時機在上一行程之進氣行程開始上死點後20º至爆炸行程結束下死點前30º (亦即目標行程之進氣行程開始上死點前700º至210º),可使大部分噴射之燃油停滯於進氣歧管之閥背上,並在目標行程進氣閥打開前預先蒸發得到較多之蒸氣量,而在目標行程進氣閥開啟後,以蒸氣形式進入缸內,使汽缸內之燃油濃度分佈較均勻,混合效果較佳。引擎性能計算結果顯示:缸內油氣濃度較不均勻的噴油時機導致較低之缸內溫度、壓力與引擎輸出馬力與較高之排氣污染物值;反之,油氣濃度均勻度高之噴油時機導致較高之之缸內溫度、壓力與引擎輸出馬力與較低之排氣污染物值。最佳與最差之噴油時機可導致引擎輸出馬力相差8.8%。另外對基本引擎的冷流場進行計算模擬,計算缸內滾轉運動的流動型態、截面渦度滾轉比與循環渦度滾轉比等量化指標。並使用實驗方法,針對基本引擎以及另外一部參考引擎,以質點影像速度儀(Partical Image Velocimeter, PIV)進行缸內流場滾轉運動瞬間速度量測。基本引擎的計算與實驗結果顯示,兩者之缸內流場結構衍化相似,滾轉比變化趨勢也大致相似。基本引擎與參考引擎實驗結果顯示,參考引擎在進氣行程的渦旋結構較明顯,因此滾轉比也較高:參考引擎的體平均循環渦度滾轉比較基本引擎高6%。


    The fuel injection timing of a two-valve, four-stroke, port-injection motorcycle engine was studied by using the experimental and computational methods. The computational fluid dynamic software CONVERGE was used to caculate the best distributions of the fuel droplet diameters, fuel concentrations and fuel evaporation propornality by optmizing the fuel injection timing. The calculation results showed that the best injection timing occurred within a period of that 700º~210º crank angle before top dead center (TDC) of the target intake stroke. Injection the fuel within the aformetioned period could cause most of the injected fuel stays in the port, evaporates, and distributes uniformly in the cylinder during the target intake stroke, and therefore induces higher combustion efficiency. The calculated engine power output of injecting the fuel within the appropriate period can be increased by approximately 8.8% when compare with that injecting the fuel out of the appropriate period. The tumble ratio of the in-cylinder flow was measured by a particle image velocimeter (PIV) to compare with the computational results. The calculated flow evolution processes in the cylinder were quite similar to those by experiment.

    摘要 Abstract 誌謝 目錄 符號索引 表圖索引 第一章 緒論 1. 1 研究動機 1. 2 文獻回顧 1. 3 研究目的與方法 第二章 計算方法 2. 1 標的引擎 2. 1. 1 引擎規格 2. 1. 2 噴嘴型式 2. 2 計算流力軟體簡介 2. 3 統御方程式 2. 3. 1 紊流模式 2. 3. 2 液滴與壁面交互作用模型 2. 4 數值方法 2. 4. 1 離散化方程式 2. 4. 2 PISO解法理論 2. 5 數值模擬 2. 5. 1 計算網格 2. 5. 2 邊界條件 2. 5. 3 初始條件 2. 5. 4 網格獨立性 2. 5. 5 收斂標準 2. 5. 6 取像相位與座標定義 2. 5. 7 量化模式定義 2. 6 物理參數定義 2. 6. 1 缸內燃油液滴平均粒徑(SMD) 2. 6. 2 空燃比 2. 6. 3 截面濃度變異值 2. 6. 4 蒸氣率 第三章 實驗設備、儀器與方法 3. 1 實驗構想與方法 3. 1. 1 引擎改裝 3. 1. 2 取像相位與座標定義 3. 1. 3 實驗引擎動力來源 3. 1. 4 質點的選用 3. 2 實驗設備 3. 2. 1 引擎型式與規格 3. 2. 2 傳動系統 3. 2. 3 質點植入系統 3. 3 實驗儀器 3. 3. 1 質點影像速度儀 3. 4 物理參數定義 3. 4. 1 樣本平均數 3. 4. 2 滾轉比(tumble ratio) 第四章 基本引擎缸內流場實驗與計算比較 4. 1 樣本次數分析 4. 1. 1 缸內對稱面上之流場結構與樣本平均次數之分析 4. 1. 2 對稱面上固定五點之速度與樣本平均次數之分析 4. 2 沿不同x, z方向之速度變化 4. 2. 1 汽缸中心對稱面上沿著z軸方向之速度變化 4. 2. 2 汽缸中心對稱面上沿著x軸方向之速度變化 4. 3 缸內流場結構衍化比較 4. 3. 1 中心對稱面(#10, y/D = 0) 4. 3. 2 中心偏移面(#7, y/D = -0.15) 4. 3. 3 中心偏移面(#13, y/D = 0.15) 4. 4 缸內滾轉強度比較 4. 4. 1 中心對稱面(#10, y/D = 0) 4. 4. 2 中心偏移面(#4, y/D = -0.3) 4. 4. 3 中心偏移面(#7, y/D = -0.15) 4. 4. 4 中心偏移面(#13, y/D = 0.15) 第五章 基本與參考引擎冷流場實驗比較 5. 1 缸內流場結構衍化比較 5. 1. 1 中心對稱面(#10, y/D = 0) 5. 1. 2 中心對稱面(#7, y/D = -0.15) 5. 1. 3 中心偏移面(#13, y/D = 0.15) 5. 1. 4 中心偏移面(#4, y/D = -0.3) 5. 2 缸內滾轉強度比較 5. 2. 1 中心對稱面(#10, y/D = 0) 5. 2. 2 中心偏移面(#4, y/D = -0.3) 5. 2. 3 中心偏移面(#7, y/D = -0.15) 5. 2. 4 中心偏移面(#13, y/D = 0.15) 5. 2. 5 面平均渦度滾轉比比較 5. 2. 6 體平均循環渦度滾轉比比較 第六章 歧管噴油引擎計算 6. 1 噴油特性分析 6. 1. 1 進氣歧管與汽缸內之燃油量變化 6. 1. 2 缸內油氣濃度分佈 6. 1. 3 濃度變異值 6. 1. 4 缸內燃油平均粒徑(SMD)變化 6. 1. 5 缸內蒸氣率變化 6. 2 燃燒性能分析 6. 2. 1 缸內平均壓力隨曲軸角度之變化 6. 2. 2 缸內平均最大壓力隨噴油時機之變化 6. 2. 3 缸內平均溫度隨曲軸角度之變化 6. 2. 4 缸內平均最大溫度隨噴油時機之變化 6. 2. 5 已燃質量分率隨曲軸角度之變化 6. 2. 6 引擎缸內平均壓力隨容積之變化 6. 2. 7 引擎輸出馬力隨噴油時機之變化 6. 2. 8 引擎輸出功隨噴油時機之變化 6. 2. 9 引擎平均有效壓力隨噴油時機之變化 6. 3 廢氣排放量分析 6. 3. 1 氮氧化合物排放量隨曲軸角度之變化 6. 3. 2 氮氧化合物排放量隨噴油時機之分佈 6. 3. 3 碳氫化合物排放量隨曲軸角度之變化 6. 3. 4 碳氫化合物排放量隨噴油時機之分佈 6. 3. 5 一氧化碳排放量隨曲軸角度之變化 6. 3. 6 一氧化碳排放量隨噴油時機之分佈 6. 3. 7 二氧化碳排放量隨曲軸角度之變化 6. 3. 8 二氧化碳排放量隨噴油時機之分佈 第七章 結論與建議 7. 1 結論 7. 1. 1 基本引擎之冷流場實驗與計算結果 7. 1. 2 基本引擎與參考引擎之缸內流場量測結果 7. 1. 3 歧管噴油引擎計算結果 7. 2 建議 參考文獻

    [1] Mayer, H., “Air Pollution in Cities,” Atmospheric Environment, Vol. 33, October 1999, pp. 4029-4036.
    [2] 李進修、王漢英:「汽機車引擎設計與分析技術」,國立清華大學出版社,2005。
    [3] Heywood, J. B., Internal Combustion Engine Fundamentals, McGraw-Hill, New York, 1988.
    [4] Heywood, J. B., “Fluid Motion within the Cylinder of Internal Combustion Engines-The 1986 Freeman Scholar Lecture,” Journal of Fluids Engineering, Transactions of the ASME, Vol. 109, No. 1, 1987, pp. 3-35.
    [5] Tennekes, H. and Lumley, J. L., A First Course in Turbulence, MIT Press, London, 1972.
    [6] Wilson, N. D., Watkins, A. J., and Dopson, C., “Asymmetric Valve Strategies and Their Effect on Combustion,” Journal of Engines, Vol. 102, 1993, pp. 1081-1092, SAE 930821.
    [7] Kent, J. C., Mikulec, A., Rimal, L., Adamczyk, A. A., Mueller, S. R., Stein, R. A., and Warren, C. C., “Observations on the Effects of Intake-Generated Swirl and Tumble on Combustion Duration,” Journal of Engines, Vol. 98, 1989, pp. 2042-203, SAE 892096.
    [8] Endres, H., Neuber, H.-J, and Wurms, R. “Influence of Swirl and Tumble on Economy and Emissions of Multi Valve SI Engines,” Journal of Engines, Vol. 101, 1992, pp. 942-953, SAE 920516.
    [9] Omorl, S., Iwachido, K., Motomochi, M., and Hirako, O., “Effect of Intake Port Flow Pattern on the In-Cylinder Tumbling Air Flow in Multi-Valve SI Engines,” Journal of Engines, Vol. 100, 1991, pp. 729-740, SAE 910477.
    [10] Ekchian, A. and Hoult, D. P., “Flow Visualization Study of the Intake Process of an Internal Combustion Engine,” Journal of Engines, Vol. 88, 1979, pp. 383-400, SAE 790095.
    [11] Rask, R. B., “Laser Doppler Anemometer Measurements in an Internal Combustion Engine,” Journal of Engines, Vol. 88, 1979. pp. 371-382. Also in SAE Transactions, SAE 790094.
    [12] Kihyung, L., Choongsik, B., Kernyong, K., “The Effects of Tumble and Swirl Flows on Flame Propagation in a Four-Valve S.I. Engine,” Applied Thermal Engineering, Vol. 27, 2007, pp. 2122-2130.
    [13] Gharakhani, A. and Ghoniem, A. F., “3D Vortex Simulation of Intake Flow in a Port-Cylinder with a Valve Seat and a Moving Piston,” Journal of Engines, Vol. 105, 1996, pp. 1627-1639, SAE 9961195.
    [14] Richter, M., Axelsson, B., Aldén, M., Josefsson, G., Carlsson, L-O., Dahlberg, M., Nisbet, J., and Simonsen, H. “Investigation of the Fuel Distribution and the In-cylinder Flow Field in a Stratified Charge Engine Using Laser Techniques and Comparison with CFD-Modelling,” Journal of Fuels and Lubricants, Vol. 108, 1999, pp. 1652-1663, SAE 1999-01-3540.
    [15] Zolver, M., Klahr, D., and Torres, A., “An Unstructured Parallel Solver for Engine Intake and Combustion Stroke Simulation,” Journal of Engines, Vol. 111, 2002, pp. 1919-1929, SAE 2002-01-1120.
    [16] 張小燕:「一款汽油機的性能提升研究」,CDAJ-China中國用戶論文集,長安汽車工程研究院,重慶(2009) 。
    [17] Surenda, G., Klunal, A., Vamshi, K., Cho, S., “Steady and Transient CFD Approach for Port Optimization,” Journal of Engines, SAE 2008-01-1430.
    [18] Rakopoulos, C., Kosmadakis, G., Pariotis, E., “Investigation of Piston Bowl Geometry and Speed Effects in a Motored HSDI Diesel Engine Using a CFD Against a Quasi-Dimensional Model,” Energy Conversion and Management, Vol. 51, 2010, pp. 470-484.
    [19] 林岱衛:「不同進氣道設計的四行程單缸引擎缸內流場與紊流特性的PIV診測」,機械工程技術研究所碩士論文,國立台灣科技大學,台北(2004) 。
    [20] 楊賀順:「平頂與凹面活塞四閥四行程引擎的缸內流場滾轉運動與紊流衍化:PIV量測技術的開發與應用」,機械工程技術研究所碩士論文,國立台灣科技大學,台北(2004) 。
    [21] 林冠旭:「增強內燃機缸內氣流滾轉運動的方法與診測:計算模擬與PIV實驗量測」,機械工程技術研究所碩士論文,國立台灣科技大學,台北(2006) 。
    [22] 游曜鴻:「內燃機缸內氣流滾轉及旋轉運動最佳化技術」,機械工程技術研究所碩士論文,國立台灣科技大學,台北(2011) 。
    [23] 林政諺:「二閥四行程機車引擎瞬間流場與歧管噴油特性的計算與實驗分析」,機械工程技術研究所碩士論文,國立台灣科技大學,台北(2012)。
    [24] 周光宇:「內燃機進氣閥入射角對缸內氣流滾轉運動的影響與最佳化設計」,機械工程技術研究所碩士論文,國立台灣科技大學,台北(2015)。
    [25] Warsi, Z. U. A., “Conservation Form of the Navier-Stokes Equations in General Nonesteady Coordinates,” AIAA Journal, Vol. 19, No. 2, 1981, pp. 240-242.
    [26] Auriemma, M., Caputo, G., Corcione, F. E., and Valentino, G., “Fluid-Dynamic Analysis of the Intake System for a HDDI Diesel Engine by STAR-CD Code and LDA Technique,” Journal of Engines, Vol. 112, SAE 2003-01-0002, pp. 21-28.
    [27] Nonaka, Y., Horikawa, A., Nonaka, Y., Hirokawa, M., and Noda, T., “Gas Flow Simulation and Visualization in Cylinder of Motor-Cycle Engine,” Journal of Engines, Vol. 113, SAE 2004-32-0004, pp. 1710-1714.
    [28] Versteeg, H. K. and Malalasekera, W., “An Introduction to Computational Fluid Dynamics-The Finite Volume Method,” Addison Wesley Longman Limited, New York, 1995.
    [29] Amsden, A. A., O’Rourke, P. J., and Butler, T. D., “KIVA-II: A Computer Program forChemically Reactive Flows with Sprays,” Los Alamos National Laboratory Report No. LA-11560-MS, 1989.

    無法下載圖示 全文公開日期 2021/07/14 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE