簡易檢索 / 詳目顯示

研究生: 沈貝珊
Pei-Shan Shen
論文名稱: 以沒食子酸改質水溶性幾丁聚醣衍生物及其抗菌性與細胞相容性研究
Antibacterial activity and cytocompatibility of water–soluble derivatives of chitosan crosslinked by gallic acid
指導教授: 楊銘乾
Ming-Chien Yang
口試委員: 李振綱
Cheng-Kang Lee
周啟雄
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 88
中文關鍵詞: 幾丁聚醣沒食子酸HTCCHTCC-GAHMDCHMDC-GA
外文關鍵詞: chitosan, gallic acid, HTCC, HTCC-GA, HMDC, HMDC-GA
相關次數: 點閱:224下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究先以縮水甘油三甲基氯化銨(glycidyl trimethyl ammonium chloride,GTMAC)及N-(2-羥基)丙基-3-甲基二丙烯基四級銨鹽 glycidyl-methyl-diallyl amonium salt (GMDAS)修飾幾丁聚醣,合成N-(2-羥基)丙基-3-三甲基氯化銨幾丁聚醣(N-(2-hydroxyl) propyl-3-trimethyl ammonium chitosan chloride) (HTCC)及N-(2-羥基) 丙基-3-甲基二丙烯基四級銨鹽化幾丁聚醣(HMDC)水溶性幾丁聚醣衍生物。再將沒食子酸(gallic acid)與HTCC及HMDC進行接枝反應,合成所得之HTCC-GA及HMDC-GA水溶性幾丁聚醣衍生物。
    使用FT-IR分析幾丁聚醣修飾物HTCC、HMDC、HTCC-GA及HMDC-GA,另以接觸角、膨潤度及zeta potential分析幾丁聚醣及其修飾物之物性,此外,並以紫外光/可見光分光光譜儀測定HTCC-GA及HMDC-GA之總分含量及DPPH自由基清除能力,最後進行抗菌性與細胞相容性實驗,並期望可應用至傷口敷料上。


    Chitosan was modified with glycidyl trimethyl ammonium chloride (GTMAC) and glycidy methyl diallyl ammonium salt (GMDAS) to produce two water soluble derivatives, N-(2-hydroxyl) propyl-3-trimethyl ammonium chitosan chloride (HTCC) and N-(2-hydroxyl) propyl-3-methyl diallyl quaternary ammonium salts of chitosan (HMDC). Furthermore, HTCC and HMDC were modified with gallic acid to produce two water soluble derivatives, HTCC-GA and HMDC-GA.
    In the first part of this study, HTCC, HTCC-GA, HMDC and HMDC-GA were examined using FT-IR to determine the chemical structures. The hydrophilicity was evaluated based on the water contact angle, swelling ratio, and biodegradability. The surface charge was determined using the zeta potential. The antibacterial activity, and cytocompatibility were evaluated for the applications as wound covering material.

    中文摘要 Ⅰ 英文摘要 Ⅱ 誌謝 Ⅲ 目錄 Ⅴ 圖索引 Ⅷ 表索引 Ⅸ 第一章 1 1.1 研究背景 3 1.2 研究目的 5 第二章 文獻回顧 5 2.1 幾丁質與幾丁聚醣 7 2.1.1 幾丁質 7 2.1.2 幾丁質的結構與特性 6 2.1.3 製備幾丁聚醣 11 2.1.4 幾丁聚醣的特性 13 2.1.5 幾丁質與幾丁聚醣的應用 15 2.1.6 幾丁質與幾丁聚醣於生醫材料之應用 17 2.1.7 幾丁聚醣之抗菌原理 19 2.2 化學修飾幾丁聚醣 22 2.2.1 四級銨鹽簡介 22 2.3 單寧化合物簡介 24 2.3.1 單寧化合物的化學性質 25 2.3.2 沒食子酸簡介 26 2.3.3 沒食子酸之藥理作用 26 2.4 微生物的生長因素 28 2.4.1 微生物的種類 28 2.4.2 微生物的繁殖與生長 29 2.4.3 微生物的生長因素 30 2.5 纖維母細胞 32 2.5.1 纖維母細胞的性質與功能 32 2.5.2 細胞貼附 32 2.5.3 纖維母細胞在人工皮膚應用的考量 33 第三章 實驗材料與方法 35 3.1 實驗藥品 35 3.2 實驗儀器 37 3.3 實驗流程 38 3.4 樣品製備 39 3.4.1 製備N-(2-羥基)丙基-3-三甲基氯化氨幾丁聚醣 39 3.4.2 製備製備四級銨鹽化合物 40 3.4.3 製備N-(2-羥基) 丙基-3-甲基二丙烯基四級銨鹽化幾丁聚醣 41 3.4.4 荔枝種子沒食子酸與N-(2-羥基)丙基-3-三甲基氯化氨幾丁聚醣接枝反應 42 3.4.5 荔枝種子沒食子酸與N-(2-羥基) 丙基-3-甲基二丙烯基四級銨鹽化幾丁聚醣接枝反應 43 3.4.6 薄膜的製備 44 3.5 基本性質測試 45 3.5.1 傅立葉紅外線光譜分析(FT-IR) 45 3.5.2 接觸角分析 45 3.5.3 膨潤度量測 46 3.5.4 總酚含量 46 3.5.5 DPPH自由基清除能力測定 47 3.5.6 Zeta potential分析 47 3.6 抗菌實驗 49 3.6.1 菌活性質之計算 49 3.6.2 抗菌活性 49 3.7 細胞相容性測試 51 3.7.1 細胞活化 51 3.7.2 細胞繼代 51 3.7.3 纖維母細胞樣品上之培養 51 3.7.4 細胞增生實驗(MTT assay) 52 第四章 結果與討論 53 4.1 傅立葉紅外線光譜分析(FT-IR) 53 4.2 總酚含量 54 4.3 DPPH自由基清除能力測定 56 4.4 接觸角分析 58 4.5 膨潤度量測 60 4.6 Zeta potential分析 63 4.7 抗菌活性 65 4.8 細胞相容性測試 68 4.8.1 細胞型態的觀察 68 4.8.2 細胞增生實驗(MTT assay) 77 第五章 結論 79 第六章 參考文獻 82 作者簡介 88

    [1] Taravel, M. N. and Domard, A., Collagen and its interaction with chitosan. II. Influence of the physicochemical characteristics of collagen. Biomaterials, 16(11):865, (1994).
    [2] Muzzarell, R. A. A., Barontini, G., and Rocchett, R., Isolation of lysozyme on chitosan. Biotech. Bioeng., 29:87, (1987).
    [3] Knorr, D., Use of chitinous polymers in food- a challenge for food research and development. Food Technol., 38:35, (1984).
    [4] 劉鍾順,幾丁聚醣整理後之織物的抗菌與吸濕複合機能研究,國立台灣科技大學高分子工程研究所碩士論文,(1995)。
    [5] 沈宗禮著,制放技術與微粒包覆,高立出版,p.127,(1980)。
    [6] Hackman, R. H., and Goldberg. M., Studies on chitin. VI. The nature of α and β-chitins. Aust. J. Biol. Sci., 18:935, (1965)
    [7] Muzzarelli, R. A. A., In: Chintin. Muzzaraelli, R. A. A. (Ed). Pergamon Press, Oxford. New York, Toronto, Sydney, Paris, Frankfurt, p.5, (1977).
    [8] Austin, P. R., Brine, C. J., Castle, J. E., and Zikakis, J. P., Chitin: New facets of research. Science, 212:749, (1981).
    [9] Muzzarelli, R. A. A., and Rocchetti, R., Determination of the degree of acetylation of chitosans by first derivative ultraviolet spectrophotometry Carbohydr. Polymers, 5:461, (1985).
    [10] Knorr, D., Use of chitinous polymers in food- a challenge for food research and development. Food Technol., 38: 85, (1984).
    [11] 李勳宜,草蝦幾丁聚醣之製備及其應用研究,國立台灣大學食品科學研究所碩士論文,(1988)。
    [12] Johnson, E., and Peniston, Q. P., Utilization of shellfish waste for chitin and chitosan production. In: Chemistry and Biochemistry of marine food products. Martin, R. E., Flick, G. J., Hebard, C. E., and Ward, D. R. (Eds), (1982).
    [13] Mima, S., Miya, M., Iwamoto, R., and Yoshikawa, S., Highly deacetylated chitosan and its properties. J. Applied Polymer Sci., 28:1909, (1983).
    [14] Bough, W. A., Salter, W. L., WU, A. C. M., and Perkins, B. E., Influence of manufacturing variables on the characteristics and effectiveness of chitosan products. II. Coagulation of activated sludge suspensions, Biotech. Bioeng., 20:1931, (1978).
    [15] Galat, A., Conformation and ultrastructrual organization of chitin isolated from crayfish Astacus astacus. Bulletin of the Academie Polonaise des Sciences, 27:987, (1979).
    [16] Muzzarelli, R. A. A., and Rocchetti, R., Determination of the degree of acetylation of chitosans by first derivative ultraviolet spectrophotometry. Carbohydr. Polymers, 5:461, (1985).
    [17] Aiba, S., Studies on chitosan: IV. Lysozymic hydrolysis of partially N-acetylated chitosans. Int. J. Biol. Macromol., 14:225, (1992).
    [18] Rinaudo, M., and Domard, A., Solution properties of chitosan. In: Chitin and Chitosan: sources, chemistry, biochemistry, physical properties and application. Skjak-braek, G., Anthonsen, T., and Sandford, P. (Eds), Elsevier Applied Science, London and New York, p.71, (1988).
    [19] Knorr, D., Use of chitinous polymers in food- a challenge for food research and development. Food Technol., 38:85, (1984).
    [20] Filar, L. F. and Wirick, M. G., Bulk and solution properties of chitosan. In: Proceedings of the 1st International Conference on chitin and chitosan. Muzzarelli, R. A. A., and Pariser, E. R. (Eds), p.169, (1978).
    [21] Kienzle-Sterzer, C., and Rha, C. K., Solution properties of chitosan: Chain conformation. In: Chitin, Chitosan and related enzymes. Zikakis, J. P. (Eds), Axademic Press, Landon, p.383, (1984).
    [22] Launay, B., Doublier, L. L., and Cuverilier, G., Flow properties of aqueous solution and dispersions of polysaccharides. In: Function properties of food macromolecules. Mitchell, J. R., and Ledward, D. A., (Eds), Elsevier applied Sci. Publishers, p.1, (1986).
    [23] Gamzazade, A. I., Sklyar, A. M., Pavlova, S. S. A., and Rogozhin, S. V., On the viscosity properties of chitosan solutions. Polym. Sci. U. S. S. R., 23:665, (1981).
    [24] Kienzle-Sterzer, C., and Rha, C. K., Flow behavior of a cation biopolymer: chitosan. Polym. Bull, 13:1, (1984).
    [25] Aiba, S., Fujiwara, Y., Hideshima, T., Kakizaki, M., Izume, N., Shoij, T., Tsutsumi, A., Hwang, C., Rha, C. K., and Sinskey, A. J., Filmogenic properties of chitin / chitosan. In: Chitin in nature and technology.Muzzarelli, R. A. A., Jeuniaux, C., and Gooday, G. M. (Eds), Plenum Press. New York, p.389, (1986).
    [26] Olsen, R., Schwartzmiller, D., Weppner, W. and Winandy, R., Biomedical applications of chitin and its derivatives. In: Skjak-Brack, G.; Anthonsen, T.; Stanford, P. A.,ed Chitin and chitosan: sources chemistry, biochemistry, physical properties and applications. New York: Elsevier Applied Science, (1989).
    [27] Miyazaki, S., Chitin and chitosan as vehicle for drug delivery. Zairyo Gijutsu, 16: 276, (1998).
    [28] Ritthidej, G. C., Chomto, P., Pummangura, S. and Menasveta, P., Chitin and chitosan as disintigrants in paracetamol tablets. Drug Dev. Ind. Pharm., 20:2019, (1994).
    [29] Calvo, P., Remunan-Lopez, C., Vila-Jato, J. L. and Alonso, M. J., Novel hydrophilic chitosan-poly ethylene oxide nanoparticles as protein carriers. J. Appl. Polym. Sci., 63:125, (1997).
    [30] Huguet, M. L., Dellacherie, E., Calcium alginate beads coated with chitosan: effect of stricture encapsulated materials on their release. Process Biochem, 31: 745, (1996).
    [31] Seham, N., Inoue, K., Yamaguchi, T. and Tamaru, T., Hydrometallurgy, Recovery of Ni from a large excess of Al generated from spent hydrodesulfurization catalyst using picolylamine type chelating resin and complexane types of chemically modified chitosan., Hydrometallurgy, 51:73, (1999).
    [32] Tanja, B., Michael, S. and Henry, S., Adsorption of nickel(II), zinc(II) and cadmium(II) by new chitosan derivatives, React. Funct. Polym., 44:289, (2000).
    [33] Tsai, G. J., Wu, Z. Y. and Su, W. H., Antibacterial activity of a chitooligosaccharide mixture. J. Food. Prot, 63:747, (2000).
    [34] Ooro, A., Kobayashi, M., Tatewaki, N. Suzuki, ,K. and Mikami, T., Protective effect of N-acetyl-chitohexaose on Listeria monocytogens infection in mice. Microbiol. Immunol., 33:357, (1989).
    [35] Hirano, S., and Noishiki, Y., The blood compatibility of chitosan and N-acetylchitosans. J. Biomed. Mater. Res., 19:413, (1985).
    [36] W. G. Malette, P. L. Omaha, U. S. Patent, 4532134, (1985)
    [37] Tararel, M. N. and Demard, A., Physical properties of water-borne polyurethane blended with chitosan, Biomaterials, 14:928, (1993).
    [38] Aly, A.S., Jeon, B.D. and Park, Y.H., Preparation and evalutation of the chitin derivatives for wastewater treatments. John Wiley & Sons. Inc., p1939, (1997).
    [39] 黃怡菁,生體高分子-生物科技的新契機,食品資訊,第 161 期,p.44,(1999)。
    [40] 曾厚,Chitin 與 Chitosan 之應用與發展現況,生物產業,第 8 卷,第 2期,p.102,(1997)。
    [41] Hirano, S., and Noishiki, Y., The blood compatibility of chitosan and N-acetylchitosans. J. Biomed. Mater. Res., 19:413, (1985).
    [42] Sezer, A.D. and Akbuga, J., Controlled release of piroxicam from chitosan beads. Int. J. Pharm., 121: 113, (1995)
    [43] Puttipipatkhachorn, S., Nunthanid, J., Yamamoto, K. and Peck,G.E., Drug physical state and drug-polymer interaction on drug release from chitosan matrix films. J. Control. Rel., 75:143, (2001).
    [44] Chandy, T. and Sharma, C.P., Effect of liposome-albumin coatings on ferric ion retention and release from chitosan beads. Biomaterials, 17(1):61, (1996).
    [45] 江晃榮,生體高分子(幾丁質•膠原蛋白)產業現況與展望,財團法人生物技術開發中心,(1998)。
    [46] Tanigawa, T., Tanaka, Y., Sashiwa, H., Saimoto, H. and Shigemasa, Y., Various biological effects of chitin derivatives. In Advances in chitin and chitosan, Elsevier Applied Science, London and New York, p. 206, (1992).
    [47] Leuba J. L., and Stossel, P., Chitosan and other polyamines antifungal activity and interaction with biology membranes. Chitin and Nature Technology Plinum Press ,New York, p.215, (1986).
    [48] Papineau, A. M., Hoover, D. G., Knorr, D. and Farkas, D. F., Antimicrobial effect of water-soluble chitosans with high hydrostatic pressure. Food Biotech., 5:45, (1991).
    [49] Jia Z., Shen D. and Xu W., Synthesis and antibacterial activities of quaternary ammonium salt of chitosan. , Carbohydr. Res., vol333, p.1, (2001).
    [50] Tan, S. C., Khor E., Tan T. K. and Wong S. M., The degree of deacetylation of chitosan: advocation the first derivative UV-spectrophotometry method of determination. Talanta, vol.45, p.713, (1998).
    [51] Hadwiger, L. A., Kendra, D. F., Fristensky,B. W. and Wagoner, W., Chitosan both activates genes in plants and inhibits RNA synthesis in fungi. Chitin in Nature and Technology, Plenum Press, p. 210, (1985).
    [52] Schipper, N. G., OIsson, S. and Hoogstraate J. A., Chitosans as absorption enhancers for poorly absorbable drugs 2:mechanism of absorption enhancement. Pharm. Res., 14:923, (1997).
    [53] Muzzarelli, R. A. A. and Tanfani E. N., The permethylation of chitosan and the preparation of N-trimethyl chitosan iodide. Carbohyd. Polym. 5:297, (1985).
    [54] Spinelli V. A., Laranjeira M. C. M. and Favere V. T., Preparation and characterization of quaternary chitosan salt:adsorption equilibrium of chromium (V1) ion. React. Funct. Polym., 6 l:347, (2004).
    [55] 傅啟峰,電催化芬頓法處理皮革廢水,國立台灣大學環境工程研究所碩士論文,(2011)。
    [56] 童熯民,蚌蘭萃取物的藥理活性研究與其沒食子酸含量分析,國立屏東科技大學獸醫學系所碩士論文,(2008)。
    [57] Shinno, E., Shimoji, M., Imaizumi, N., Kinoshita, S., Sunakawa, H. and Aniya, Y., Activation of rat liver microsomal glutathione S-transferase by gallic acid. Life Sciences, 78:99, (2005).
    [58] 戴光展,黃卓治,發酵對香椿葉中沒食子酸含量及抗氧化性之影響。國立屏東科技大學食品科學系碩士論文,(2004)。
    [59] Anjana, J., Monika, B. and Sangeeta, S., Protective effect of Terminalia belerica Roxb. and gallic acid against carbon tetrachloride induced damage in albino rats. Journal of Ethnopharmacology, 109:214, (2007).
    [60] 劉香君,吳立真,徐士蘭,沒食子酸誘導小鼠肺纖維母細胞凋亡之分子作用機轉。國立暨南國際大學生物醫學科技研究所碩士論文,(2006)。
    [61] 劉技謀,人工真皮之製備與透明質酸添加效應之研究,國立成功大學生物科技研究所碩士論文,(2001)。
    [62] Anselme, K., Osteoblast adhesion on biomaterials. Biomaterials, 21:667, (2000).
    [63] 王建文,糖反應幾丁聚醣/聚乙二醇生醫可降解性高分子之製備與生物評估,國立成功大學材料科學與工程研究所博士論文,(2004).
    [64] Chatelet, C., Damour, O. and Domard, D.A., Influence of the degree of acetylation on some biological properties of chitosan films. Biomaterials, 22:261, (2001).
    [65] Boyce, S.T., Christianson, D.J., and Hansbrough,J.F., Structure of a collagen-GAG dermal skin Substitute optimized for cultured human epidermal keratinocytes. J Biomed Mater Res., 22:939, (1988).
    [66] Lim, S.H. and Hudson, S.M., Synthesis and antimicrobial activity of a water-soluble chitosan derivative with fiber-reactive group. Science direct., p.313, (2004).
    [67] Chen, J. C., Yeh J. T. and Chen C. C., Crosslinking of cotton cellulose in the preaence of alkyl dially ammonium salts I: Physical properties and agent distribution. J. Appl. Polym. Sci., 90:1662, (2003).
    [68] Lim, S. H. and Hudson, S. M., Synthesis and antimicrobial activity of a water-soluble chitosan derivative with fiber-reactive group. Science direct. Carbohyd. Res., 22:313, (2004).
    [69] Singleton, V. L., Rossi, J. A. and J.AM. J. Enol. Vitic., 16:144, (1965).
    [70] Jou C.H., Antibacterial activity and cytocompatibility of chitosan-N-hydroxy-2,3- propyl-N methyl- N, N-diallylammonium methyl sulfate. Colloid. Surface. B. Accepted, (2011).
    [71] Chanwithessuk, A., Teerawutgulrag, A., Kilburn, J. D. and Rakariyatham,N., Antimicrobial gallic acid from Caesalpinia mimosoides Lamk. Food Chemistry, 100:1044, (2011).
    [72] Du, W. L., Niu, S. S., Xu, Y. L., Xu, Z. R. and Cheng L. F., Antibacterial activity of chitosan tripolyphosphate nanoparticles loaded with various metal ions. Carbohydrate Polymers, 75:385, (2009).
    [73] Kubo I., Fujita K. I. and Nihei K. I., Molecular designmultifunction antibacterial agent against methicillin resistant Staphylococcus aureus (MRSA). Bioorg. Med. Chem., 11:4255, (2003).
    [74] Chandrasekaran, S., Tanzer, M. L., and Giniger, M. S., Oligomannosides initiate cell spreading of laminin-adherent murine melanoma cells. J. Biol. Chem., 269: 3356, (1994).
    [75] Coelho M.A., Berumen L., and Avrameas S., Properties of protein polymers as substratum for cell growth in vitro. J. Cell Physiol., 83:379, (1974).
    [76] Uchida, Y., Izume, M. and Ohtakara, A., Chitin andchitosan, Elsevier Applied Science, London and New York , (1988).
    [77] Chatelet, C., Damour, O. and Domard A., Inflence of the degree of acetylation onsome biological properties of chitosan films. Biomaterials, 22:261, (2001).
    [78] Huang, L. H., Sung, H. W., Tsai, C. C. and Huang, D. M., Biocompatibility study of a biological tissue fixed with a naturally occuring crosslinking reagent. J. Biomed. Mater. Res., 42:568, (1998).
    [79] Mori, T., Okumura, M., Matsuura, M., Ueno, K., Tokura, S., Okamoto,Y., Minami, S. and Fujinaga, T., Effects of chitin and its derivatives on the proliferation and cytokine production of fibroblasts in vitro. Biomaterials, 18:947, (1997).

    無法下載圖示 全文公開日期 2016/07/25 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE