簡易檢索 / 詳目顯示

研究生: Vo Duc Thang
Vo - Duc Thang
論文名稱: 疏水性幾丁聚醣之特性製備及應用
Preparation, Characterization and Applications of Hydrophobically Modified Chitosan
指導教授: 李 振 綱
Cheng-Kang, Lee
口試委員: Chris Whiteley
Chris Whiteley
Ming-Hua, Ho
Ming-Hua, Ho
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 64
中文關鍵詞: 疏水性幾丁聚醣磁珠大腸桿菌接枝
外文關鍵詞: Hydrophobically modified chitosan, magnetic particles, E. coli collection, grafted
相關次數: 點閱:407下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 疏水性幾丁聚醣(Hydrophobically modified chitosan)是由十二烷基醛和幾丁聚醣(chitosan)的反應合成,並利用長疏水鏈達到止血的功能。在此篇研究中,將分別由血液及大腸桿菌液作疏水性幾丁聚醣凝血能力的說明。
    此外我們也特別探討疏水性幾丁聚醣之泡沫態穩定性質。疏水性幾丁聚醣接枝於磁性微珠表面,並經由添加磁場來有效地移除凝血細胞。其中幾丁聚醣、疏水性幾丁聚醣及疏水性幾丁聚醣接枝磁性微珠之特性將利用傅立葉紅外光譜儀、元素分析、電子顯微鏡和熱重分析儀進行分析。疏水性幾丁聚醣之去乙醯化和取代程度分別為81%和11%。此篇研究中我們利用葛蘭氏陰性菌(例如:大腸桿菌)細胞膜與磁性微珠疏水端間的作用來描述其捕捉能力。


    Hydrophobically modified chitosan (HMCS) was synthesized by reacting dodecyl aldehyde with chitosan (CS). HMCS has been reported to have a good hemostatic property. It can coagulate blood cells via its hydrophobic tails. In this work, HMCS was synthesized and its capability on coagulating blood cells and E. coli was demonstrated, respectively. In addition, the strong foam stabilization effect of HMCS was also demonstrated. In order to generate coagulated cells which can be moved by applying magnetic field, HMCS was grafted to the surface of magnetic micro-particles (MMPs). The characterization of CS, HMCS, HMCS grafted MMPs were carried by Fourier transform infrared spectroscopy (FTIR), elemental analysis (EA), SEM, TGA. The degree of deacetylation (DDA) and degree of substitution (DS) of HMCS are 81% and 11%, respectively. The HMCS modified MMPs has demonstrated its capability for capturing Gram-negative bacteria such as E. coli due to the hydrophobic interaction between the hydrophobic tail of HMCS and outer membrane of E. coli.

    TABLE OF CONTENTS ABSTRACT i LIST OF FIGURES vii CHAPTER 1 1 INTRODUCTION 1 1.1. Background 1 1.2. Objectives 1 CHAPTER 2 3 LITERATURE REVIEW 3 2.1. Chitosan (CS) 3 2.2. Preparation of hydrophobically modified chitosan (HMCS) 4 2.2.1. Preparation of HMCS through the formation of a Schiff base 4 2.2.2. Preparation of HMCS through the formation of an amide linkages 5 2.3. Applications of hydrophobically modified chitosan (HMCS) 6 2.3.1. Hemostatic action 6 2.3.2. HMCS self-aggregation nanoparticles for drug delivery 7 2.4. Intrinsic viscosity and the viscosity-average molecular weight of chitosan 8 2.5. Calculation of empirical formula of CS and HMCS by elemental analysis 10 2.6. Surfactant and foam stability 12 2.7. Chitosan coated magnetic nanoparticles 15 2.8. Magnetic nanoparticles for cell capture 17 2.9. Preparation of CS/HMCS grafted magnetic microparticles 19 2.9.1. Magnetic microparticles (MMPs), magnetic polymeric microsphere and magnetic separation 19 2.9.2. Core-shell Fe3O4@SiO2 microparticles 21 2.9.3. Amino-functionalized magnetic microparticles 22 2.9.4. Covalent immobilization of CS/HMCS on magnetic microparticles 22 2.10. Ninhydrin assay 23 2.10.1. Quantification of amino groups 23 2.10.2. Identification of sodium cyanoborohydride 25 2.11. Sulfuric acid – phenol assay 25 CHAPTER 3 26 MATERIAL AND METHOD 26 3.1. Material 26 3.1.1. Bacteria 26 3.1.2. Experiment chemical 26 3.1.3. Experiment culture medium 27 3.1.4. Experiment reagent 27 3.1.5. Experiment apparatus 29 3.2. Method 30 3.2.1. Intrinsic viscosity and the viscosity-average molecular weight of chitosan 30 3.2.2. Synthesis of hydrophobically modified chitosan (HMCS) 30 3.2.3. Characterization of hydrophobic properties 31 3.2.4. Preparation of CS/HMCS grafted magnetic particles 32 3.2.1. Ninhydrin Assay 33 3.2.2. Sulfuric acid – phenol assay 34 3.2.3. E. coli collection 34 3.2.4. S. aureus collection 35 3.2.5. E. coli inhibition 35 3.3. Characterizations: FTIR, Emelemtal Analysis, SEM, TGA 35 CHAPTER 4 37 RESULTS AND DISCUSSION 37 4.1. Intrinsic viscosity and the viscosity-average molecular weight of chitosan (Mv) 37 4.2. Preparation of HMCS 39 4.3. Characterizations of HMCS 39 4.3.1. FTIR spectra of chitosan (CS) and hydrophobically modified chitosan (HMCS) 39 4.3.2. Degree of deacetylation (DDA) and degree of substitution (DS) of HMCS 40 4.4. Well-dispersed micro-bubbles and stable foam 42 4.5. Hemostatic property and E. coli gel 49 4.6. Synthesis of CS/HMCS grafted on Fe3O4 MMPs 50 4.7. Characterization of CS/HMCS grafted on Fe3O4 MMPs 51 4.8. E. coli collection 55 4.8.1. E. coli collection in PBS solution 55 4.8.2. E. coli collection in PB solution 57 4.9. E. coli inhibition in LB medium 58 4.10. S. aureus collection 59 CHAPTER 5 60 CONCLUSIONS 60 5.1. Characterization of chitosan (CS) 60 5.2. Hydrophobically modified chitosan (HMCS) 60 5.3. Well-dispersed bubbles, stable foam, hemostatic and E. coli gel 60 5.4. CS/HMCS grafted magnetic microparticles (@CS/@HMCS) 60 5.5. E. coli collection and inhibition effect of HMCS grafted magnetic microparticles 61 5.6. Applications of HMCS grafted magnetic microparticles 61 REFERENCES 62

    Berensmeier, S. (2006). Magnetic particles for the separation and purification of nucleic acids. Applied Microbiology and Biotechnology, 73(3), 495-504. doi: 10.1007/s00253-006-0675-0
    Berger, N. B. A., Katie J. Beckman, Dean J. Campbell, Arthur B. Ellis, and George C. Lisensky. (1999). Preparation and Properties of an Aqueous Ferrofluid. Journal of Chemical Education, 76(7), 943-948.
    Chen, S., Hayakawa, S., Shirosaki, Y., Fujii, E., Kawabata, K., Tsuru, K., & Osaka, A. (2009). Sol–Gel Synthesis and Microstructure Analysis of Amino-Modified Hybrid Silica Nanoparticles from Aminopropyltriethoxysilane and Tetraethoxysilane. Journal of the American Ceramic Society, 92(9), 2074-2082. doi: 10.1111/j.1551-2916.2009.03135.x
    Chiu, Y.-L., Chen, M.-C., Chen, C.-Y., Lee, P.-W., Mi, F.-L., Jeng, U. S., . . . Sung, H.-W. (2009). Rapidly in situ forming hydrophobically-modified chitosan hydrogels via pH-responsive nanostructure transformation. Soft Matter, 5(5), 962. doi: 10.1039/b818906d
    Desbrieres, J., Martinez, C., & Rinaudo, M. (1996). Hydrophobic derivatives of chitosan: Characterization and rheological behaviour. International Journal of Biological Macromolecules, 19(1), 21-28. doi: http://dx.doi.org/10.1016/0141-8130(96)01095-1
    Dowling, M. B., Kumar, R., Keibler, M. A., Hess, J. R., Bochicchio, G. V., & Raghavan, S. R. (2011). A self-assembling hydrophobically modified chitosan capable of reversible hemostatic action. Biomaterials, 32(13), 3351-3357. doi: 10.1016/j.biomaterials.2010.12.033
    Drochioiu, G., Mangalagiu, I., Avram, E., Popa, K., Dirtu, A. C., & Druta, I. (2004). Cyanide Reaction with Ninhydrin: Elucidation of Reaction and Interference Mechanisms. Analytical Sciences, 20(10), 1443-1447.
    El-Boubbou, K., Gruden, C., & Huang, X. (2007). Magnetic Glyco-nanoparticles:  A Unique Tool for Rapid Pathogen Detection, Decontamination, and Strain Differentiation. Journal of the American Chemical Society, 129(44), 13392-13393. doi: 10.1021/ja076086e
    Fei Liu, X., Lin Guan, Y., Zhi Yang, D., Li, Z., & De Yao, K. (2001). Antibacterial action of chitosan and carboxymethylated chitosan. Journal of Applied Polymer Science, 79(7), 1324-1335. doi: 10.1002/1097-4628(20010214)79:7<1324::AID-APP210>3.0.CO;2-L
    Friedman, M. (2004). Applications of the Ninhydrin Reaction for Analysis of Amino Acids, Peptides, and Proteins to Agricultural and Biomedical Sciences. Journal of Agricultural and Food Chemistry, 52(3), 385-406. doi: 10.1021/jf030490p
    Geng, X., Kwon, O. H., & Jang, J. (2005). Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials, 26(27), 5427-5432. doi: 10.1016/j.biomaterials.2005.01.066
    Ghasemi, M., Minier, M., Tatoulian, M., & Arefi-Khonsari, F. (2007). Determination of Amine and Aldehyde Surface Densities:  Application to the Study of Aged Plasma Treated Polyethylene Films. Langmuir, 23(23), 11554-11561. doi: 10.1021/la701126t
    Gu, H., Ho, P.-L., Wt Tsang, K., Yu, C.-W., & Xu, B. (2003). Using biofunctional magnetic nanoparticles to capture Gram-negative bacteria at an ultra-low concentration. Chemical Communications(15), 1966-1967. doi: 10.1039/B305421G
    Gu , P.-L., Tsang, K. W. T., Wang, L., & Xu, B. (2003). Using Biofunctional Magnetic Nanoparticles to Capture Vancomycin-Resistant Enterococci and Other Gram-Positive Bacteria at Ultralow Concentration. Journal of the American Chemical Society, 125(51), 15702-15703. doi: 10.1021/ja0359310
    Hu, B., Pan, J., Yu, H.-L., Liu, J.-W., & Xu, J.-H. (2009). Immobilization of Serratia marcescens lipase onto amino-functionalized magnetic nanoparticles for repeated use in enzymatic synthesis of Diltiazem intermediate. Process Biochemistry, 44(9), 1019-1024. doi: http://dx.doi.org/10.1016/j.procbio.2009.05.001
    Hui, C., Shen, C., Tian, J., Bao, L., Ding, H., Li, C., . . . Gao, H.-J. (2011). Core-shell Fe3O4@SiO2 nanoparticles synthesized with well-dispersed hydrophilic Fe3O4 seeds. Nanoscale, 3(2), 701-705. doi: 10.1039/C0NR00497A
    Hui, C., Shen, C., Yang, T., Bao, L., Tian, J., Ding, H., . . . Gao, H. J. (2008). Large-Scale Fe 3O 4 Nanoparticles Soluble in Water Synthesized by a Facile Method. The Journal of Physical Chemistry C, 112(30), 11336-11339. doi: 10.1021/jp801632p
    Kasaai, M. R., Arul, J., & Charlet, G. (2000). Intrinsic viscosity–molecular weight relationship for chitosan. Journal of Polymer Science Part B: Polymer Physics, 38(19), 2591-2598. doi: 10.1002/1099-0488(20001001)38:19<2591::AID-POLB110>3.0.CO;2-6
    Kim, C. U. K. (1997). Mechanism aqueous foam stability and antifoaming action. Journal of Ind. and Eng. Chemistry, 3(2), 9.
    Kim, Y. H., Gihm, S. H., Park, C. R., Lee, K. Y., Kim, T. W., Kwon, I. C., . . . Jeong, S. Y. (2001). Structural Characteristics of Size-Controlled Self-Aggregates of Deoxycholic Acid-Modified Chitosan and Their Application as a DNA Delivery Carrier. Bioconjugate Chemistry, 12(6), 932-938. doi: 10.1021/bc015510c
    Lai, G.-S., Zhang, H.-L., & Han, D.-Y. (2008). A novel hydrogen peroxide biosensor based on hemoglobin immobilized on magnetic chitosan microspheres modified electrode. Sensors and Actuators B: Chemical, 129(2), 497-503. doi: http://dx.doi.org/10.1016/j.snb.2007.08.041
    Lee, J.-H., Gustin, J. P., Chen, T., Payne, G. F., & Raghavan, S. R. (2004). Vesicle−Biopolymer Gels:  Networks of Surfactant Vesicles Connected by Associating Biopolymers. Langmuir, 21(1), 26-33. doi: 10.1021/la048194+
    Lee, K. Y., Kwon, I. C., Kim, Y. H., Jo, W. H., & Jeong, S. Y. (1998). Preparation of chitosan self-aggregates as a gene delivery system. Journal of Controlled Release, 51(2–3), 213-220. doi: http://dx.doi.org/10.1016/S0168-3659(97)00173-9
    Li, Y.-Y., Chen, X.-G., Yu, L.-M., Wang, S.-X., Sun, G.-Z., & Zhou, H.-Y. (2006). Aggregation of hydrophobically modified chitosan in solution and at the air–water interface. Journal of Applied Polymer Science, 102(2), 1968-1973. doi: 10.1002/app.24485
    Li, Y., Xu, X., Deng, C., Yang, P., & Zhang, X. (2007). Immobilization of Trypsin on Superparamagnetic Nanoparticles for Rapid and Effective Proteolysis. Journal of Proteome Research, 6(9), 3849-3855. doi: 10.1021/pr070132s
    Lin, Z.-A., Zheng, J.-N., Lin, F., Zhang, L., Cai, Z., & Chen, G.-N. (2011). Synthesis of magnetic nanoparticles with immobilized aminophenylboronic acid for selective capture of glycoproteins. Journal of Materials Chemistry, 21(2), 518-524. doi: 10.1039/C0JM02300K
    Liu , Chen, X., & Park, H. (2005). Self-assembled nanoparticles based on linoleic-acid modified chitosan: Stability and adsorption of trypsin. Carbohydrate Polymers, 62(3), 293-298. doi: 10.1016/j.carbpol.2005.08.010
    Liu, Desai, K. G. H., Chen, X.-G., & Park, H.-J. (2005). Preparation and Characterization of Nanoparticles Containing Trypsin Based on Hydrophobically Modified Chitosan. Journal of Agricultural and Food Chemistry, 53(5), 1728-1733. doi: 10.1021/jf040304v
    Liu, C.-G., Desai, K. G. H., Chen, X.-G., & Park, H.-J. (2004). Linolenic Acid-Modified Chitosan for Formation of Self-Assembled Nanoparticles. Journal of Agricultural and Food Chemistry, 53(2), 437-441. doi: 10.1021/jf040188w
    Mourya, V. K., Inamdar, N. N., & Tiwari, A. (2010). Carboxymethyl chitosan and its applications. Advanced Materials Letters, 1(1), 11-33. doi: 10.5185/amlett.2010.3108
    Nagaraja, P., Hemantha Kumar, M. S., Yathirajan, H. S., & Prakash, J. S. (2002). Novel Sensitive Spectrophotometric Method for the Trace Determination of Cyanide in Industrial Effluent. Analytical Sciences, 18(9), 1027-1030.
    Ooshida, S. (2013). PEG-2 Caprylylamine: A New Adjuvant Surfactant to Boost Lather Rate. Cosmetics & Toiletries, 128, 240-248.
    Pamies, R., Hernandez Cifre, J. G., del Carmen Lopez Martinez, M., & Garcia de la Torre, J. (2008). Determination of intrinsic viscosities of macromolecules and nanoparticles. Comparison of single-point and dilution procedures. Colloid and Polymer Science, 286(11), 1223-1231. doi: 10.1007/s00396-008-1902-2
    Philipse, M. P. B. v. B., and Chellapah Pathmamanoharan. (1994). Magnetic Silica Dispersions: Preparation and Stability of Surface-Modified Silica Particles with a Magnetic Core. Langmuir, 10, 92-99.
    Schramm, L. L. (2005). Emulsions, Foams, and Suspensions - Fundamentals and Applications: WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
    St. Dennis, J. E., Meng, Q., Zheng, R., Pesika, N. S., McPherson, G. L., He, J., . . . Raghavan, S. R. (2011). Carbon microspheres as network nodes in a novel biocompatible gel. Soft Matter, 7(9), 4170-4173. doi: 10.1039/C0SM01430C
    Szegedi, A., Popova, M., Goshev, I., Klebert, S., & Mihaly, J. (2012). Controlled drug release on amine functionalized spherical MCM-41. Journal of Solid State Chemistry, 194(0), 257-263. doi: http://dx.doi.org/10.1016/j.jssc.2012.05.030
    Wang, R., Neoh, K. G., Shi, Z., Kang, E.-T., Tambyah, P. A., & Chiong, E. (2012). Inhibition of escherichia coli and proteus mirabilis adhesion and biofilm formation on medical grade silicone surface. Biotechnology and Bioengineering, 109(2), 336-345. doi: 10.1002/bit.23342
    Weng, L., Rostamzadeh, P., Nooryshokry, N., Le, H. C., & Golzarian, J. (2013). In vitro and in vivo evaluation of biodegradable embolic microspheres with tunable anticancer drug release. Acta Biomaterialia, 9(6), 6823-6833. doi: http://dx.doi.org/10.1016/j.actbio.2013.02.017
    Wilhelm, C., Billotey, C., Roger, J., Pons, J. N., Bacri, J. C., & Gazeau, F. (2003). Intracellular uptake of anionic superparamagnetic nanoparticles as a function of their surface coating. Biomaterials, 24(6), 1001-1011. doi: http://dx.doi.org/10.1016/S0142-9612(02)00440-4
    Wu, Y., Wang, Y., Luo, G., & Dai, Y. (2009). In situ preparation of magnetic Fe3O4-chitosan nanoparticles for lipase immobilization by cross-linking and oxidation in aqueous solution. Bioresource Technology, 100(14), 3459-3464. doi: http://dx.doi.org/10.1016/j.biortech.2009.02.018
    Xu, X., Deng, C., Gao, M., Yu, W., Yang, P., & Zhang, X. (2006). Synthesis of Magnetic Microspheres with Immobilized Metal Ions for Enrichment and Direct Determination of Phosphopeptides by Matrix-Assisted Laser Desorption Ionization Mass Spectrometry. Advanced Materials, 18(24), 3289-3293. doi: 10.1002/adma.200601546
    Yang, L., Guo, C., Jia, L., Xie, K., Shou, Q., & Liu, H. (2010). Fabrication of Biocompatible Temperature- and pH-Responsive Magnetic Nanoparticles and Their Reversible Agglomeration in Aqueous Milieu. Industrial & Engineering Chemistry Research, 49(18), 8518-8525. doi: 10.1021/ie100587e
    Zhang, X., Niu, H., Pan, Y., Shi, Y., & Cai, Y. (2010). Chitosan-Coated Octadecyl-Functionalized Magnetite Nanoparticles: Preparation and Application in Extraction of Trace Pollutants from Environmental Water Samples. Analytical Chemistry, 82(6), 2363-2371. doi: 10.1021/ac902589t
    Zhu, A., Chan-Park, M. B., Dai, S., & Li, L. (2005). The aggregation behavior of O-carboxymethylchitosan in dilute aqueous solution. Colloids and Surfaces B: Biointerfaces, 43(3–4), 143-149. doi: http://dx.doi.org/10.1016/j.colsurfb.2005.04.009

    無法下載圖示 全文公開日期 2017/01/10 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE