簡易檢索 / 詳目顯示

研究生: 吳炳煬
Ping-Yang Wu
論文名稱: 新型微創手術並聯式全解耦機器人之機電系統設計與實作
Design and Implementation of the Mechatronic System of a New Fully Decoupled Parallel Robot for Minimally Invasive Surgery
指導教授: 郭進星
Chin-Hsing Kuo
口試委員: 郭重顯
Chung-Hsien Kuo
林紀穎
Chi-Ying Lin
曾清秀
Ching-Shiow Tseng
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 94
中文關鍵詞: 並聯機器人微創手術機電整合
外文關鍵詞: Parallel robot, Minimally invasive surgery, Mechatronic design
相關次數: 點閱:378下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 機器人輔助微創手術為近十年來廣受矚目的手術科技,藉由機器人輔助下,可大幅改善醫生因手術時間過長而造成的手抖與疲勞現象,而對於病人亦可降低其手術風險性、減少術後併發症、縮短術後復原時間。近幾年來已陸續有許多微創手術機器人被提出,Kuo與Dai [1]於2012年提出了一種具有四個自由度的全解耦並聯式微創手術機器人構想,其中最特別的是,該機構具有運動全解耦特性,即刀具的四個活動自由度可分別受單一馬達獨立控制。然而,在Kuo與Dai的研究中,僅提出該機器人之機構構想與逆向運動學分析,對於機器人的動力特性與具體實現並未加以探討。本論文之目的即進行該機器人之動力分析以及機電系統設計與實作,研究首先推導機器人之順向運動學解,求得該機器人驅動馬達與末端效應器之位移關係,並利用螺旋理論(Screw theory)分析機器人各接頭與末端效應器之速度關係,再透過拉格朗日動力分析法(Lagrangian dynamic formulation),求得驅動馬達之扭矩方程式。基於以上理論分析結果,本論文進一步著手該機器人系統之機電整合實作,搭配搖桿、電腦與光學式定位器等硬體設備,建構該新型微創手術機器人系統,並完成時間誤差、全解耦驗證、角度誤差與重複精度等四項實驗測試。實驗結果顯示,本實作機器人確實可展現其運動全解耦之特性,唯系統之時間反應與輸入/輸出角度誤差仍有其改善空間。本研究成果期可有助於該新型手術機器人之具體臨床應用與實現。


    Robotically-assisted minimally invasive surgery is a modern surgical technology that has called wide attention in the past decade. Via the helps of surgical robots, not only can be the surgeon’s hand tremor and fatigue dramatically minimized, but also the patient’s safety and recovery time are significantly reduced. There have been numerous surgical robots proposed in recent years for minimally invasive surgery. Among them, Kuo and Dai [1] presented a special mechanism concept of a kinematically fully decoupled parallel manipulator in this kind. Most interestingly, this special mechanism is featured by its kinematic decouplebility, which means each output motion degree-of-freedom of the robot can be independently controlled by one corresponding actuator. However, only the novel structure and inverse kinematics analysis of the manipulator were reported in their study. Nothing else (e.g., dynamics analysis, validation, etc.) was discussed in their results. This thesis, therefore, aims to extend Kuo and Dai’s contribution, studying the dynamic characteristics of the robot and implementing its mechatronic system. First, we embark with the forward kinematics analysis of the robot manipulator. Then, based on screw theory, we investigate the velocity relationship between the joints and the end-effector. Next, we present the analytical solution of the torques of the four motors by Lagrangian dynamic formulation. Finally, we build up the mechatronic system including the robot, optical tracker system, joystick, computer, etc. for validating the feasibility of the concept. Four experiments including the time error test, kinematic decouplebility test, angle error test, and repeatability precision test are carried out for the system. The results show that the kinematic decouplebility of the robot can be satisfactorily implemented through the test-rig, but the time response and the input/output angle error need to be further improved. In conclusion, it is anticipated that the outcome of this study can promote the practical uses of this new surgical robot.

    摘要 I Abstract III 誌謝 IV 目錄 V 圖目錄 VIII 表目錄 X 符號表 XI 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 2 1.2.1並聯機構之動力分析 2 1.2.2手術機器人之控制方式 6 1.3 研究目的 10 1.4 論文架構 11 第二章 機構介紹與理論基礎 13 2.1 機構介紹 13 2.2 螺旋理論 16 2.3 拉格朗日動力分析法 17 2.3.1 廣義坐標(Generalized coordinates) 18 2.3.2 拘束條件(Constraints) 18 2.3.3 拉格朗日運動方程式(Lagrange equation of motion) 19 2.3.4 替代型拉格朗日運動方程式(Alternative forms of the Lagrange equation of motion) 22 2.3.5 拉格朗日動力分析方程式 24 2.4 小結 25 第三章 運動分析 26 3.1 逆向運動分析 26 3.2 順向運動分析 27 3.3 速度分析 30 3.4 數值範例 33 3.4.1 位置驗證 33 3.4.2 速度驗證 35 3.5 小結 38 第四章 逆向動力分析 39 4.1 拉格朗日動力方程式 39 4.1.1 廣義坐標之選用 39 4.1.2 拘束條件之選用 40 4.1.3 動能與位能方程式 41 4.1.4 動力方程式 45 4.2 小結 47 第五章 機電整合 48 5.1 系統架構 48 5.2 主動端設備 49 5.3 從動端設備 50 5.4 光學式位置量測設備 53 5.5 操作測試 56 5.5.1 實驗設備校正 56 5.5.2 時間誤差實驗 58 5.5.3 全解耦驗證實驗 60 5.5.4 角度誤差量測實驗 63 5.5.5 重複精度實驗 65 5.6 小結 68 第六章 結論與未來展望 69 6.1 結論 69 6.2 未來展望 71 參考文獻 73

    [1] Kuo, C. H., Dai, J. S., 2012, “Kinematics of a Fully-Decoupled Remote Center-of-Motion Parallel Manipulator for Minimally Invasive Surgery,” ASME Journal of Medical Devices, 6(2), pp. 021008(1-12).
    [2] Kuo, C. H., Dai, J. S., Dasgupta, P., 2012, “Kinematic Design Considerations for Minimally Invasive Surgical Robots: An Overview,” The International Journal of Medical Robotics and Computer Assisted Surgery, 8(2), pp. 127-145.
    [3] Do, W. Q. D., Yang, D. C. H., 1988, “Inverse Dynamic Analysis and Simulation of a Platform Type of Robot,” Journal of Robotic Systems, 5(3), pp. 209-227.
    [4] Guglielmetti, P., Longchamp, R., 1994, “A Closed Form Inverse Dynamics Model of the Delta Parallel Robot,” Proceedings of the 4th IFAC Symposium on Robot Control, Capri, Italy, 19-21 October, pp. 51-56.
    [5] Dasgupta, B., Mruthyunjaya, T., 1998, “A Newton-Euler Formulation for the Inverse Dynamics of the Stewart Platform Manipulator,” Mechanism and Machine Theory, 33(8), pp. 1135-1152.
    [6] Dasgupta, B., Mruthyunjaya, T., 1998, “Closed-Form Dynamic Equations of the General Stewart Platform through the Newton–Euler Approach,” Mechanism and Machine Theory, 33(7), pp. 993-1012.
    [7] Dasgupta, B., Choudhury, P., 1999, “A General Strategy Based on the Newton-Euler Approach for the Dynamic Formulation of Parallel Manipulators,” Mechanism and Machine Theory, 34(6), pp. 801-824.
    [8] Tsai, L. W., 1999, Robot Analysis: The Mechanics of Serial and Parallel Manipulators, John Wiley & Sons, New York.
    [9] Lee, K. M., Shah, D. K., 1988, “Dynamic Analysis of a Three-Degrees-of-Freedom In-Parallel Actuated Manipulator,” IEEE Journal of Robotics and Automation, 4(3), pp. 361-367.
    [10] Miller, K., Clavel, R., 1992, “The Lagrange-based Model of Delta-4 Robot Dynamics,” Robotersysteme, 8(1), pp. 49-54.
    [11] Lebret, G., Liu, K., Lewis, F. L., 1993, “Dynamic Analysis and Control of a Stewart Platform Manipulator,” Journal of Robotic Systems, 10(5), pp. 629-655.
    [12] Pang, H., Shahinpoor, M., 1994, “Inverse Dynamics of a Parallel Manipulator,” Journal of Robotic Systems, 11(8), pp. 693-702.
    [13] Li, Y., Xu, Q., 2005, “Kinematics and Inverse Dynamics Analysis for a General 3-PRS Spatial Parallel Mechanism,” Robotica, 23(2), pp. 219-229.
    [14] Ahmadi, M., Dehghani, M., Eghtesad, M., Khayatian, A. R., 2008, “Inverse Dynamics of Hexa Parallel Robot Using Lagrangian Dynamics Formulation,” Proceedings of the 12th International Conference on Intelligent Engineering Systems, Miami, Florida, USA, 25-29 February, pp. 145-149.
    [15] Liu, X., Wang, Q., Malikov, A., Wang, H., 2012, “The Design and Dynamic Analysis of a Novel 6-DOF Parallel Mechanism,” International Journal of Machine Learning and Cybernetics, 3(1), pp. 27-37.
    [16] Zhang, C. D., Song, S. M., 1993, “An Efficient Method for Inverse Dynamics of Manipulators Based on the Virtual Work Principle,” Journal of Robotic Systems, 10(5), pp. 605-627.
    [17] Tsai, L. W., 2000, “Solving the Inverse Dynamics of a Stewart-Gough Manipulator by the Principle of Virtual Work,” ASME Journal of Mechanical Design, 122(1), pp. 3-9.
    [18] Sokolov, A., Xirouchakis, P., 2007, “Dynamics Analysis of a 3-DOF Parallel Manipulator with R-P-S Joint Structure,” Mechanism and Machine Theory, 42(5), pp. 541-557.
    [19] Plitea, N., Pisla, D., Vaida, C., Gherman, B., Pisla, A., 2008, “Dynamic Modeling of a Parallel Robot used in Minimally Invasive Surgery,” Proceedings of the 2nd European Conference on Mechanism Science, Cassino, Italy, 17-20 September, pp. 595-602.
    [20] Staicu, S., 2009, “Dynamics Analysis of the Star Parallel Manipulator,” Robotics and Autonomous Systems, 57(11), pp. 1057-1064.
    [21] Nathoo, N., Cavusoglu, M. C., Vogelbaum, M. A., Barnett, G. H., 2005, “In Touch with Robotics: Neurosurgery for the Future,” Neurosurgery, 56(3), pp. 421-433.
    [22] Glauser, D., Fankhauser, H., Epitaux, M., Hefti, J. L., Jaccottet, A., 1995, “Neurosurgical Robot Minerva: First Results and Current Developments,” Computer Aided Surgery, 1(5), pp. 266-272.
    [23] Taylor, R. H., Stoianovici, D., 2003, “Medical Robotics in Computer-Integrated Surgery,” IEEE Transactions on Robotics and Automation, 19(5), pp. 765-781.
    [24] Stoianovici, D., 2000, “Robotic Surgery,” World Journal of Urology, 18(4), pp. 289-295.
    [25] Camarillo, D. B., Krummel, T. M., Salisbury Jr, J. K., 2004, “Robotic Technology in Surgery: Past, Present, and Future,” The American Journal of Surgery, 188(4), pp. 2-15.
    [26] Carrozza, M. C., Lencioni, L., Magnani, B., D'Attanasio, S., Dario, P., Pietrabissa, A., Trivella, M., 1997, “The Development of a Microrobot System for Colonoscopy,” Proceedings of the 1st Joint Conference on Computer Vision, Virtual Reality and Robotics in Medicine and Medical Robotics and Computer-Assisted Surgery, Grenoble, France, 19-22 March, pp. 777-788.
    [27] Salcudean, S. E., Ku, S., Bell, G., 1997, “Performance Measurement in Scaled Teleoperation for Microsurgery,” Proceedings of the 1st Joint Conference on Computer Vision, Virtual Reality and Robotics in Medicine and Medical Robotics and Computer-Assisted Surgery, Grenoble, France, 19-22 March pp. 789-798.
    [28] Cavusoglu, M. C., Tendick, F., Cohn, M., Sastry, S. S., 1999, “A Laparoscopic Telesurgical Workstation,” IEEE Transactions on Robotics and Automation, 15(4), pp. 728-739.
    [29] Sung, G. T., Gill, I. S., 2001, “Robotic Laparoscopic Surgery: A Comparison of the da Vinci and Zeus systems,” Urology, 58(6), pp. 893-898.
    [30] Berkelman, P., Ma, J., 2009, “A Compact Modular Teleoperated Robotic System for Laparoscopic Surgery,” The International Journal of Robotics Research, 28(9), pp. 1198-1215.
    [31] Vilchis Gonzales, A., Cinquin, P., Troccaz, J., Guerraz, A., Hennion, B., Pellissier, F., Thorel, P., Courreges, F., Gourdon, A., Poisson, G., 2001, “TER: A System for Robotic Tele-Echography,” Proceedings of the 4th International Conference on Medical Image Computing and Computer-Assisted Intervention, Utrecht, Netherlands, 14-17 October, pp. 326-334.
    [32] McBeth, P. B., Louw, D. F., Rizun, P. R., Sutherland, G. R., 2004, “Robotics in Neurosurgery,” The American Journal of Surgery, 188(4), pp. 68-75.
    [33] Intuitive Surgical. Available from: http://www.intuitivesurgical.com/.
    [34] Taylor, R. H., Funda, J., Eldridge, B., Gomory, S., Gruben, K., LaRose, D., Talamini, M., Kavoussi, L., Anderson, J., 1995, “A Telerobotic Assistant for Laparoscopic Surgery,” IEEE Engineering in Medicine and Biology Magazine, 14(3), pp. 279-288.
    [35] Yasunaga, T., Hashizume, M., Kobayashi, E., Tanoue, K., Akahoshi, T., Konishi, K., Yamaguchi, S., Kinjo, N., Tomikawa, M., Muragaki, Y., 2003, “Remote-Controlled Laparoscope Manipulator System, Naviot™, for Endoscopic Surgery,” Proceedings of the 17th International Congress of Computer Assisted Radiology, London, United Kingdom, 25-28 June, Vol. 1256, pp. 678-683.
    [36] Burghart, C., Krempien, R., Redlich, T., Pernozzoli, A., Grabowski, H., Muenchenberg, J., Albers, J., Hassfeld, S., Vahl, C., Rembold, U., 1999, “Robot Assisted Craniofacial Surgery: First Clinical Evaluation,” Proceedings of the 13th Conference on Computer Assisted Radiology and Surgery, Paris, France, 23-26 June, pp. 828-833.
    [37] Taylor, R., Jensen, P., Whitcomb, L., Barnes, A., Kumar, R., Stoianovici, D., Gupta, P., Wang, Z., Dejuan, E., Kavoussi, L., 1999, “A Steady-Hand Robotic System for Microsurgical Augmentation,” The International Journal of Robotics Research, 18(12), pp. 1201-1210.
    [38] Schneider, O., Troccaz, J., 2001, “A Six‐Degree‐of‐Freedom Passive Arm with Dynamic Constraints (PADyC) for Cardiac Surgery Application: Preliminary Experiments,” Computer Aided Surgery, 6(6), pp. 340-351.
    [39] Quaid, A. E., Abovitz, R. A., 2002, “Haptic Information Displays for Computer-Assisted Surgery,” Proceedings of the IEEE International Conference on Robotics and Automation, Washington, DC, USA, 11-15 May, Vol. 2, pp. 2092-2097.
    [40] Jakopec, M., Rodriguez y Baena, F., Harris, S. J., Gomes, P., Cobb, J., Davies, B. L., 2003, “The Hands-on Orthopaedic Robot ”Acrobot”: Early Clinical Trials of Total Knee Replacement Surgery,” IEEE Transactions on Robotics and Automation, 19(5), pp. 902-911.
    [41] Nimsky, C., Rachinger, J., Iro, H., Fahlbusch, R., 2004, “Adaptation of a Hexapod-based Robotic System for Extended Endoscope-Assisted Transsphenoidal Skull Base Surgery,” Minimally Invasive Neurosurgery, 47(1), pp. 41-46.
    [42] Lieberman, I. H., Togawa, D., Kayanja, M. M., Reinhardt, M. K., Friedlander, A., Knoller, N., Benzel, E. C., 2006, “Bone-Mounted Miniature Robotic Guidance for Pedicle Screw and Translaminar Facet Screw Placement: Part I-Technical Development and a Test Case Result,” Neurosurgery, 59(3), pp. 641-650.
    [43] Low, S. C., Phee, L., 2006, “A Review of Master–Slave Robotic Systems for Surgery,” International Journal of Humanoid Robotics, 3(4), pp. 547-567.
    [44] Ball, R. S., A Treatise on the Theory of Screws, Cambridge University Press, Cambridge.
    [45] Hunt, K. H., 1990, Kinematic Geometry of Mechanisms, Clarendon Press Oxford.
    [46] 應祖光,2011,高等動力學-理論及應用, 浙江大學出版社,杭州市.
    [47] D'Souza, A. F., Garg, V. K., 1984, Advanced Dynamics: Modeling and Analysis, Prentice-Hall, Englewood Cliffs, NJ.
    [48] Gallardo, J., Orozco, H., Rico, J. M., 2008, “Kinematics of 3-RPS Parallel Manipulators by Means of Screw Theory,” The International Journal of Advanced Manufacturing Technology, 36(5-6), pp. 598-605.
    [49] Gallardo, J., Aguilar, C. R., Casique, R. L., Rico, J. M., Islam, M. N., 2008, “Kinematics and Dynamics of 2 (3-RPS) Manipulators by Means of Screw Theory and the Principle of Virtual Work,” Mechanism and Machine Theory, 43(10), pp. 1281-1294.
    [50] Gallardo, J., Rico, J. M., Alici, G., 2006, “Kinematics and Singularity Analyses of a 4-dof Parallel Manipulator Using Screw Theory,” Mechanism and Machine Theory, 41(9), pp. 1048-1061.
    [51] 敏石系統有限公司. Available from: http://www.montrol.com.tw/.
    [52] Northern Digital Inc. Available from: http://www.ndigital.com/.
    [53] Geomagic Inc. Available from: http://geomagic.com/en/.

    無法下載圖示 全文公開日期 2019/07/30 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE