簡易檢索 / 詳目顯示

研究生: 魏佳賓
CHIA-PIN WEI
論文名稱: 具單相功因校正之直流無刷電動機速度控制系統研製
Development of Speed Control System for Brushless DC Motors with Single-phase Power Factor Correction
指導教授: 黃仲欽
Jonq-Chin Hwang
口試委員: 葉勝年
Sheng-Nian Yeh
王順源
Shun-Yuan Wang
郭明哲
Ming-Tse Kuo
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 77
中文關鍵詞: 交錯式昇壓型轉換器功因校正無刷直流電動機直流鏈動態昇壓無感測器控制
外文關鍵詞: boost type power factor correction, interleaving control, dynamic voltage boosting regulation control, brushless DC electric motor, sensor-less control
相關次數: 點閱:235下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文旨在研製具單相功因校正之直流無刷電動機速度控制系統,主要包括兩個部分:雙臂交錯式昇壓型轉換器之單相功因校正電路,以及無感測器三相無刷直流電動機控制系統,俾分別用於市電側及電動機負載端。前者可得電源側高功因、低電流諧波含量、降低直流鏈電壓漣波、縮小儲能電感體積以及增加電源密度;而後者則採用無感測器控制方式驅動,透過偵測電動機的感應電動勢相電壓零點,獲得實際轉速,再藉由微控制器整合上述功能方塊,依據轉速命令和實際速度之間的轉速誤差,對交錯式功因校正器進行動態升壓調節。此方法可降低電動機換流器之切換損失,提高電動機運轉效能,亦可得單相電源側高功因及低電流諧波含量的功能。
    本系統之輸入市電電壓為單相交流電壓110V,頻率為60Hz,功因校正之單相交錯式功率轉換器的直流鏈電壓控制範圍在190V至380V;三相無刷直流電動機轉速範圍為1160rpm至2160rpm之間。三相無刷直流電動機在2160rpm、2N-m 下,透過直流鏈動態昇壓及轉速控制之測試,得市電側功率因數0.996,電流總諧波失真率5.38%,整機效率87.1%。實測結果驗證了本文系統之可行性。


    This thesis aims to design and implement a speed control system for brushless dc (BLDC) motors with single-phase power factor correction (PFC). The system contains two major parts: the boost type PFC with two-phase interleaving control and sensor-less control for three phase BLDC motors used, respectively, on the grid and load sides. The former can yield high power factor as well as low total harmonic distortion (THD) on the input, and ripple voltage reduction of the dc-link, thereby reducing the inductance volume and increasing the power density. While the latter is driven by sensor-less control via detecting zero-induced electro-motive-force to obtain the actual motor speed. A microcontroller is used to control the two functional blocks mentioned above and conduct dynamic voltage boosting regulation on the interleaving PFC in accordance with the error speed between commanding and actual motor speeds. The proposed control method can reduce switching loss of three-phase inverter, improve the operation efficiency of motor, keep high input power factor and low current THD.
    The single-phase input voltage is 110V, 60Hz and the dc-link voltage range of power factor correction is from 190V to 380V. The speed range of BLDC motor under control is from 1160rpm to 2160rpm. Experimental results show that for the BLDC under 2160rpm and 2 N-m, dynamic voltage boosting regulation and speed control give the current THD of 5.38%, the input power factor of 0.996 and the overall efficiency of 87.1%. The feasibility of the proposed system is verified experimentally.

    摘要 I Abstract II 誌謝 III 目錄 IV 符號索引 VI 圖表索引 IX 第一章 緒論 1 1-1 研究動機及目的 1 1-2 文獻探討 2 1-3 系統架構及本文特色 3 1-4 本文大綱 4 第二章 單相功因校正器及控制 6 2-1 前言 6 2-2 單相功因校正電路 6 2-3 單相主動式功因校正電路 7 2-4 主動式功因校正控制策略 9 2-5 交錯式昇壓型電源轉換器 12 2-6 單相功因校正器實體製作 15 2-6-1 儲能電感設計 18 2-6-2 輸出電容設計 21 2-6-3 功率元件設計 22 2-6-4 比流器、取樣電阻及峰值電流限制設計 22 2-6-5 工作頻率與最大工作週期設計 23 2-6-6 輸出電壓回授及過電壓保護設計 23 2-6-7 電壓迴路補償設計 24 2-6-8 電流迴路補償設計 25 2-6-9 軟啟動時間設計 26 2-6-10 切換頻率展頻設計 26 2-7 實驗結果 27 2-8 結語 31 第三章 三相無刷直流電動機及驅動器 32 3-1 前言 32 3-2 三相無刷直流電動機之數學模式 32 3-3 三相無刷直流電動機控制策略 34 3-4 三相無刷直流電動機等效電路參數 37 3-5 無刷直流電動機驅動器之控制架構 39 3-5-1 積體電路ML4425 41 3-5-2 啟動模式 44 3-5-3 鎖相迴路 46 3-5-4 反電動勢取樣迴路 47 3-5-5 過電流保護迴路 48 3-6 驅動器的實體製作 49 3-7 結語 53 第四章 系統整合及實測 54 4-1 前言 54 4-2 微控制器介面電路製作 54 4-3 無刷直流電動機轉速設定策略 58 4-4 系統整合實測 61 4-5 結語 71 第五章 結論及建議 72 5-1 結論 72 5-2 建議 73 參考文獻 74 附錄A STW38N65M5規格 76 附錄B STPSC20065規格 77

    [1]國際能源總署 (http://www.iea.org/index.asp )
    [2]D. Marsh, “Active power factor correction,” EDN EUROPE, pp. 31-34, 2000.
    [3]K. Rustom and I. Batarseh, “Recent advances in single-stage power factor correction,” IEEE Industrial Technology, vol. 2, pp. 1089-1095, 2003.
    [4]B. Singh, B. N. Singh, A. Chandra, K. A1-Haddad, A. Pandey, and D. P. Kothari, “A review of single-phase improved power quality ac-dc converters,” IEEE Transactions on Industrial Electronics, vol 50, pp. 962-981, 2003.
    [5]J. R. Pinheiro, H. A. Grundling, D. L. R. Vidor, J. E. Baggio, “Control strategy of an interleaved boost power factor correction converter,” IEEE Power Electronics Specialists Conference, vol. 1, pp. 137-142, 1999.
    [6]Y. S. Lai, K. Y. Lee, J. H. Tseng, Y. C. Chen and T. L. Hsiao, “Efficiency comparison of PWM-controlled and PAM -controlled sensorless BLDCM drives for refrigerator applications,” IEEE Transactions on Industry Applications, pp. 268-273, 2007.
    [7]Y. Zhao, “Single phase power factor correction circuit with wide output voltage range,” Master Thesis, Dept. Elec. and Computer Eng., Univ. Virginia, Blackburg, Virginia, 1998.
    [8]L. Malesani, L. Rossetto, P. Tenti, and P. Tomasin, “AC/DC/AC pwm converter with reduced energy storage in the dc link,” IEEE Transactions on Industry Applications, vol. 31, pp. 287-292, 1995.
    [9]R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, 2nd ed.: Springer, 2001.
    [10]經濟部能源局 (http://energymonthly.tier.org.tw/outdatecontent. asp?ReportIssue=201410&Page=16)
    [11]孫清華,最新直流無刷馬達,全華科技圖書,2001。
    [12]Q. Jiang, C. Bi and R. Hung, “A new phase-delay-free method to detect back EMF zero-crossing points for sensorless control of spindle motors,” IEEE Transactions on Magnetics, vol. 41, no. 7, pp. 2287-2294, 2005.
    [13]G. H. Jang, J. H. Park and J. J. Chang, “Position detection and start-up algorithm of a rotor in a sensorless BLDC motor utilizing inductance variation,” IEE Proceedings Electric Power Applications, vol. 149 no. 2, pp. 137-142, 2002.
    [14]T. H. Kim, B. K. Lee and M. Ehsani, “Sensorless control of BLDC motor from near zero to high speed,” Eighteenth Annual IEEE Applied Power Electronics Conference and Exposition, pp. 306-312, Feb. 9-13, 2003.
    [15]W. J. Lee and S. K. Sul, “A new starting method of BLDC motors without position sensor,” IEEE Transactions on Industry Applications, vol. 42, pp. 1532-1538, 2006.
    [16]U. Moriconi, "A bridgeless PFC configuration based on L4981 PFC Controller ", ST Microelectronics Application Note AN1606, 2002.
    [17]L. H. Chen, J. C. Hwang, S. N. Yeh and G. C. Yu, “Analysis and
    design of four-leg fuel cell boost converter”, Proceedings of IEEE IECON, pp. 4285-4290, 2006.
    [18]UCC28070, Interleaving continuous conduction mode PFC Controller, Texas Instruments Co., 2011.
    [19]UCC28070, Interleaved PFC pre-regulator user’s guide, Texas Instruments Co., 2009.
    [20]M. O’Loughlin, "An interleaved PFC pre-regulator for high power converters", Texas Instrument Power Supply Design Seminar, vol. Topic 5, pp. 5-1, 5-14, 2007.
    [21]ML4425, sensorless BLDC motor controller, Fairchild Semiconductor Co., 2001.
    [22]AN-42004, Using the ML4425/ML4426 BLDC motor controller, Fairchild Semiconductor Co., 1996.
    [23]許志榮,”可控直流鏈電壓之永磁同步電動機驅動系統研製”,國立台灣科技大學電機研究所碩士論文,民國九十五年。
    [24]金德昌,”永磁式同步電動機之設計及其轉速控制系統研製”,國立台灣科技大學電機研究所碩士論文,民國九十七年。
    [25]AN-9035, smart power module motion-SPM in mini-dip user’s guide, Fairchild Semiconductor Co., 2005.
    [26]MC9S08SG8, HCS08 microcontrollers, Freescale Semiconductor, 2014.

    無法下載圖示 全文公開日期 2022/07/14 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE