簡易檢索 / 詳目顯示

研究生: 陳達賢
Da-shien Chen
論文名稱: 直驅式無刷直流電動機驅動系統之研製
Development of a Direct-Drive System for Brushless DC Motors
指導教授: 葉勝年
Sheng-nian Yeh
口試委員: 蕭弘清
none
陳慕平
none
黃仲欽
Jonq-chin Hwang
王順源
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 58
中文關鍵詞: 直驅式無刷直流電動機
外文關鍵詞: Brushless, Direct-Drive
相關次數: 點閱:209下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文旨在研製高效能之直驅式無刷直流電動機驅動系統。在電源方面採用單相交流-直流功率轉換器,配合電流預測法控制,將能量供給無刷直流電動機,並改善市電側之電流諧波及提高功率因數。無刷直流電動機方面,則採用低價位之霍爾效應磁極偵測元件,以回授六步方波的磁極位置,並以磁極位置估測實際轉速,完成轉矩與速度之控制。為達到無刷直流電動機之高速運轉控制,本文提出六步方波換相之提前相角控制,具有弱磁之效果,可提高轉速至額定之2.5倍。
    本文首先對系統作理論分析,然後進行硬體製作與軟體程式之撰寫。系統以德州儀器公司之數位信號處理器(DSP, TMS320F2407A)為控制核心,以減少硬體電路,降低成本。本文已完成硬體電路製作與控制軟體編寫,並於輸入110 V、60 Hz之單相電源及直流鏈電壓命令200 V之條件下,系統可輸出400 W之功率,且在此狀況下市電側之功率因數達0.98,輸入電流諧波含量為8.9 %。另外,無刷直流電動機在100 rpm正反運轉下,其輸出電磁轉矩可達20 N-m,而在高速運轉控制下最大轉速可達500 rpm,輸出電磁轉矩可達4 N-m。本文系統具有低速高轉矩及高速定功率運轉之性能,適用於無需齒輪之直驅式驅動場合。


    This thesis is concerned with the design and implementation of a direct-drive system for brushless dc motors. On the grid side, a current-controlled single-phase power converter is designed to improve current harmonics and power factor, while on motor side, Hall-effect sensors are used to detect the position of rotor to estimate speed. In addition, the speed and current of motor are fed back to control speed and torque, respectively. In order to control the brushless dc motor in high speed, the phase-advancement control of six-step square waves is proposed to extend field-weakening region to 2.5 times of rated speed.
    Theoretical analysis of the proposed system is given first. The implementation of hardware and software follows subsequently. A digital signal processor (DSP, TMS320F2407A) is used for the core control of the system to reduce cost and hardware components. Under input source of 110 V, 60 Hz and the dc-link voltage command of 200 V, the output of the system realized is 400 W. The associated power factor is 0.98 and the harmonic distortion of input current is 8.9 % on the grid side. Besides, the output torque under the low-speed range of -100 to 100 rpm is 20 N-m, whereas the maximum speed can reach as high as 500 rpm by high-speed control with the output torque of 4 N-m. The features of low-speed, high-torque and high-speed, constant-power operations are developed to facilitate gearless direct-drive applications.

    中文摘要 I 英文摘要 II 目 錄 III 符號索引 V 圖表索引 VIII 第一章 緒論. 1 1.1 前言 1 1.2 系統架構 2 1.3 本文大綱 3 第二章 單相昇壓式交流-直流功率轉換器之分析與控制... 5 2.1 前言 5 2.2 單相昇壓式交流-直流功率轉換器之分析 5 2.2.1 單相昇壓式交流-直流功率轉換器簡介…. 5 2.2.2 單相昇壓式交流-直流全橋半控型功率轉換器之等效電路 7 2.3 單相昇壓式交流-直流功率轉換器之數學模式.... 10 2.4 市電側電流控制 10 2.4.1 電流預測型之電流控制器 10 2.4.2 具負載估測之電流預測型電流控制器 13 2.5 結語… 14 第三章 無刷直流電動機驅動系統 15 3.1 前言 15 3.2 無刷直流電動機簡介 15 3.3 無刷直流電動機六步方波控制 18 3.4 無刷直流電動機轉速及電流閉迴路控制 23 3.5 無刷直流電動機之高速運轉控制 24 3.6 結語 25 第四章 實體製作及實測結果 28 4.1 前言 28 4.2 硬體電路實作 . 29 4.2.1 數位信號處理器之介面電路 29 4.2.2 電流回授電路 30 4.2.3 直流鏈電壓偵測電路 31 4.2.4 市電側電壓之同步偵測電路 31 4.3 軟體規劃 32 4.3.1 主程式流程規劃 32 4.3.2 單相昇壓式交流-直流功率轉換器控制程式流程規劃. 33 4.3.3 無刷直流電動機轉速及電流閉回路程式流程規劃…. 35 4.3.4 無刷直流電動機高速運轉之實作及程式流程規劃…. 37 4.4 實測結果 40 4.4.1 單相昇壓式交流-直流功率轉換器系統實測 40 4.4.2 無刷直流電動機驅動系統實測 45 4.5 結語 50 第五章 結論及未來研究方向 51 5.1 結論 51 5.2 未來研究方向 51 參考文獻 53 附錄A 無刷直流電動機規格 57 作者簡介 58

    [1] C. Qiao and K. M. Smedley, “A General Three-phase PFC Controller for Rectifiers with a Parallel-Connected Dual Boost Topology,” IEEE Transactions on Power Electronics, Vol. 17, No. 6, pp. 925-934, 2002.
    [2] A. I. Maswood, A. K. Yusop and M. A. Rahman, “A Novel Suppressed-link Rectifier-inverter Topology with Near Unity Power factor,” IEEE Transactions on Power Electronics, Vol 17, No. 5, pp. 692-700, 2002.
    [3] J. C. Salmon, T. Tang and E. Nowicki, “Operation, Control and Performance of a Family of High Power Unity Power Factor Rectifiers,” Canadian Conference on Electrical and Computer Engineering, Vol. 2, pp. 854 -857, 1995.
    [4] E. L. M. Mehl and I. Barbi, “An Improved High Power Factor and Low Cost Three-phase Rectifier,” IEEE PESC’ 95, Vol. 2, pp. 835 -841, 1995.
    [5] I. Barbi, J. C. Fagundes and C. M. T. Cruz, “A Low Cost High Power Factor Three-phase Diode Rectifier with Capacitive Load,” IEEE APEC '94, Vol. 2, pp. 745-751, 1994.
    [6] C. Qiao and K. M. Smedley, “A General Three-phase PFC Controller. II. For Rectifiers with a Series-connected Dual-boost Topology,” IEEE Industry Applications Conference, Vol. 4, pp. 2512-2519, 1999.
    [7] T. Viitanen and H. Tuusa, “A Steady-state Power Loss Consideration of the 50kW VIENNA I and PWM Full-bridge Three-phase Rectifiers,” IEEE Power Electronics Specialists Conference, Vol. 2, pp. 915-920, 2002.
    [8] J. C. Salmon, “Circuit Topologies for PWM Boost Rectifiers Operated from 1-phase and 3-phase AC Supplies and Using either Single or Split DC Rail Voltage Outputs,” IEEE APEC '95, Vol. 1, pp. 473-479, 1995.
    [9] P. C. Sen, “Electric Motor Drives and Control-past, Present, and Future,” IEE Transactions on Industrial Electronics, Vol. 37. No. 6,pp. 562-575,1990.
    [10] C. L. Chu, M. C. Tsai and H. Y. Chen, “Torque Control of Brushless DC Motors Applied to Electric Vehicles,” 2001 IEEE International Electric Machines and Drives Conference, pp. 82-87, 2001.
    [11] C. C. Chan, J. Z. Jiang, W. Xia and K. T. Chau, “Novel Wide Range Speed Control of Permanent Magnet Brushless Motor Drives,” IEEE Transactions on Power Electronics, Vol. 10, pp. 539-546, 1995.
    [12] C. C. Chan, J. Z. Jiang, G. H. Chen, X. Y. Wang and K. T. Chau, “A Novel Polyphase Multipole Square-wave Permanent Mangnet Motor Drive for Electric Vehicles,” IEEE Transations on Industry Applications, Vol. 30, No. 5, pp. 1258-1266, 1994.
    [13] B. K. Bose and P. M. Szczesny, “A Microcomputer-based Control and Simulation of an Advanced IPM Synchronous Machine Drive System for Electric Vehicle Propulsion,” IEEE Transations on Industry Applications, Vol. 35, No. 4, pp. 547-559, 1988.
    [14] S. Morimoto, M. Sanada and Y. Takeda, “Wide-speed Operation of Interior Permanent Magnet Synchronous Motors with High-performance Current Regulator,” IEEE Transactions on Industry Applications, Vol. 30, No. 4, pp. 920-926, 1994.
    [15] S. Morimoto, M. Sanada and Y. Takeda , “Effects and Compensation of Magnetic Saturation in Flux-weakening Controlled Permanent Magnet Synchronous Motor Drives,” IEEE Transactions on Industry Applications, Vol. 30, No. 6, pp. 1632-1637, 1994.
    [16] T. D. Batzel and K. Y. Lee, “Commutation Torque Ripple Minimization for Permanent Magnet Synchronous Machines with Hall Effect Position Feedback,” IEEE Transactions on Energy Conversion, Vol. 13, No. 3, pp. 257-262, 1998.
    [17] F. Caricchi, F. G. Capponi, F. Crescimbini and L. Solero, “Sinusoidal Brushless Drive with Low-cost Linear Hall Effect Position Sensors,” IEEE Power Electronics Specialists Conference, PESC ’01, Record, Vol. 2, pp. 799-804, 2001.
    [18] L. Malesani and P. Tomasin, “PWM Current Control Techniques of Voltage Source Converters-A Survey,” IEEE-IECON Proceedings, Vol. 12, pp. 670-675, 1993.
    [19] Y. Nishida, O. Miyashita, T. Haneyoshi, H. Tomita and A. Maeda, “A Predictive Instantaneous-Current PWM Controlled Rectifier with AC-Side Harmonic Current Reduction,” IEEE-IECON, Vol. 12, pp. 1204-1209, 1993.
    [20] H. L. Huy, K. Slimani and P. Viarouge, “Analysis and Implementation of Real-Time Predictive Current Controller for Permanent-Magnet Synchronous Servo Drivers,” IEEE Transactions on Industrial Electronics, Vol. 41, No. 1, pp. 110-117, 1994.
    [21] R. Wu, S. B. Dewan and G. R. Slemon, “A PWM AC-to-DC Converter with Fixed Switching Frequency,” IEEE Transactions on Industry Applications, Vol. 26, No. 5, pp. 880-885, 1990.
    [22] T. Y. Chang, K. L. Lo and C. T. Pan, “A Novel Vector Control Hysteresis Current Controller for Induction Motor Drivers,” IEEE Transactions on Energy Conversion, Vol. 9, No. 2, pp. 297-303, 1994.
    [23] D. M. Brod and D. W. Novothy, “Current Control of VSI-PWM Inverters,” IEEE Transactions on Industry Applications, Vol. 26, No. 5, pp. 880-885, 1990.
    [24] P. Pillay and R. Krishnan, “Modeling of Permanent Magnet Motor Drives”, IEEE Transactions on Industrial Electronics, Vol. 35, pp. 537-541, 1988.
    [25] K. F. Rasmussen, J. H. Davies, T. J. E. Miller, M. I. McGelp and M. Olaru, “Analytical and Numerical Computation of Air-gap Magnetic Fields in Brushless Motors with Surface Permanent Magnets,” IEEE Transactions on Industry Applications, Vol. 1, pp. 104-109 ,1999.
    [26] F. Huang, X. Jiang and Y. Wang, “A Dedicated Permanent Magnet Synchronous Motor Drive System for Electric Vehicle,” 1995 Power Electronics Specialists Conference, PESC ’95, Record, Vol. 1, pp. 252-257, 1995.
    [27] W. Juan and A. Leal, “Current Control Strategy for Brushless DC Motors Based on a Common DC Signal,” IEEE Transactions on Power Electronics, Vol. 17, No. 2, pp. 232-240, 2002.

    QR CODE