簡易檢索 / 詳目顯示

研究生: 張庭翔
Ting-Hsiang Chang
論文名稱: 銅鍺合金奈米線的製備及其電性之研究
Fabrication and Electrical Properties of Cu-Ge Alloy Nanowires
指導教授: 王秋燕
Chiu-Yen Wang
口試委員: 周苡嘉
Yi-Chia Chou
蔡孟霖
Men-Lin Tsai
周賢鎧
Shian-Kai Jou
葉炳宏
Ping-Hung Yeh
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 129
中文關鍵詞: 銅鍺合金奈米線Cu3Ge/Ge異質奈米線場效電晶體金屬奈米線異質結構電性量測
外文關鍵詞: Cu-Ge alloy nanowires, Cu3Ge/Ge heterostructure nanowires, Field effect transistors, Metal nanowires, Heterostructure, Electrical properties measurement
相關次數: 點閱:309下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要為銅-鍺合金的奈米線材料的製程、材料微結構分析和電性量測表現。分為兩大主題,Cu3Ge和Cu3Ge/Ge材料系統。第一部分為金屬線的Cu3Ge,在Cu3Ge的系統中在熔點以下和熔點以上進行壓鑄,其中熔點以下(700 oC)進行壓鑄再細分為,有退火和沒有退火的部分,退火的條件為550 oC 持溫 12小時。再者,利用陽極氧化鋁(Anodic Aluminum Oxide, AAO)模板結合真空壓鑄系統來生成奈米線,再經由鉻酸溶液隔水加熱進行蝕刻取得奈米線。奈米線材料進行微結構分析,包含 X 光射線繞射分析、拉曼光譜分析和電子顯微鏡的能量散射光譜儀分析等。有無退火的奈米線進行 X 光射線繞射分析和拉曼光譜分析的比較,用來確定對奈米線退火是否有消除奈米線內部之缺陷之效果,來達到後續元件表現進步的依據。藉由進行電子束微影(E-Beam Lithography, EBL)製程製備元件、經由緩衝氧化物蝕刻(Buffer Oxide Etching)等處理。隨著設備的更新我們嘗試在熔點以上壓鑄(800 oC)Cu3Ge奈米線,其目的是希望塊材再高於熔點的溫度下更均勻,得到更純粹且更優取向的單晶奈米線,也希望在電性表現上有更加突破的展現。在電性量測中,獲取兩點探針和TLM量測數據,其電阻率最低至 6.01 μΩ• cm,更加證實了Cu3Ge奈米線具有良好的傳導特性和低電阻的優勢。
    第二部分為Cu3Ge/Ge異質結構奈米線,由於鍺元素具有低的直接能隙能量Eg(~0.66 eV)和高的載流子遷移率µh、μe,對於異質結構的奈米線作為材料製備場效電晶體管(Field Effect Transistors, FETs)元件起到極大的作用。為了更好的達到異質結構(分段)的效果,根據相圖,配置過共晶相的成分,Cu0.55Ge0.45。製程方面,塊材以快速焠火的方式取得,透過陽極氧化鋁模板和真空壓鑄系統製備奈米線,壓鑄的過程中,塊材會進行固-液-固的熱力學相轉變,以陽極氧化鋁模板的緻密孔洞作為容器,達到分段之特殊的異質結構。經由接觸後之能帶圖顯示,Cu3Ge/Ge奈米線原件為p型金氧半場效應電晶體(MOSFETs)。但是,由於在壓鑄和蝕刻奈米線未找到最佳化的參數,導致在X光射線繞射分析和拉曼光譜分析甚至電性的量測數據上都有所欠缺,但進一步發現類似碗豆狀之異質結構的奈米線。對於此項研究起到極大的重要性。


    This research mainly focuses on the manufacturing process, material microstructure analysis and electrical measurement performance of Cu-Ge alloy nanowires. Divided into two major themes, Cu3Ge and Cu3Ge/Ge material system. The first part is the Cu3Ge of the metal nanowires. In the Cu3Ge system, the die-casting is performed below the melting point and above the melting point. The die-casting is carried out below the melting point (700 oC) and subdivided into parts with and without annealing. The annealing condition is 550 oC and maintained for 12 hours. Furthermore, anodic aluminum oxide (AAO) templates are combined with a vacuum die-casting system to generate nanowires, and then etched by chromic-acid solution to obtain nanowires. Microstructure analysis of nanowires materials, including Xray diffraction analysis (XRD), Raman spectroscopy analysis and energy dispersive spectrometer analysis of scanning electron microscope (EDS), etc. The comparison of X-ray diffraction analysis and Raman spectrum analysis of nanowires with or without annealing is used to determine whether the annealing of nanowires has the effect of eliminating defects inside nanowires, so as to achieve the basis for the improvement of subsequent device performance. Components are prepared by performing electron beam lithography (EBL) process, and processed by buffer oxide etching (BOE). With the update of the equipment, Cu3Ge nanowires are prepared by die casting method above the melting point. The purpose is to hope that the bulk material will be more uniform at a temperature higher than the melting point. Better-oriented single crystal nanowires that there will be more breakthroughs in electrical performance. In the electrical measurement, the two-point probe and TLM measurement results were obtained, and the resistivity was as low as 6.01 μΩ• cm, which further confirmed that Cu3Ge nanowires have the advantages of good conductivity. The second part is Cu3Ge /Ge heterostructure nanowires. Since germanium has low direct energy gap energy Eg (~0.66 eV) and high carrier mobility µh, μe, the heterostructure nanowires as materials. The preparation of field effect transistors (FETs) elements plays a great role. In order to better achieve the effect of heterostructure (segmentation), according to the phase diagram, configure the composition of the hypereutectic phase, Cu0.55Ge0.45. In terms of manufacturing process, the block is obtained by rapid quenching, and the nanowires are prepared through an anodized aluminum template and a vacuum die-casting system. During the diecasting process, the block will undergo a solid-liquid-solid thermodynamic phase transition, and the anodized aluminum template the dense pores are used as containers to achieve a special heterogeneous structure of segments. The energy band diagram after contact shows that the Cu3Ge /Ge nanowire components are p-type metal oxide field effect transistors (MOSFETs). However, due to the lack of optimized parameters in die-casting and etching nanowires, there is a lack of X-ray diffraction analysis and Raman spectroscopy analysis and even electrical measurement data, but it is further found that similar peas heterostructure nanowires. is of great importance to this research.

    摘要................................................................................I Abstract..........................................................................III 致謝................................................................................V List of Abbreviations and Acronyms.................................................IX List of Figures and Tables..........................................................X Chapter 1 Introduction .............................................................1 1.1 Nanostructure...................................................................1 1.1.1 One-dimensional (1D) nanostructure ...........................................1 1.2 Synthesis of one-dimensional nanostructures.....................................2 1.2.1 Vacuum hydraulic pressure injection process (die-casting).....................3 1.3 Crystal structure and characteristics of Cu3Ge .................................3 1.4 Ge element .....................................................................6 1.5 Heterostructure.................................................................8 1.6 Cu3Ge/Ge 1D materials...........................................................8 1.7 Selective etching ..............................................................9 1.8 Flow charts of research........................................................10 Chapter 2. Experimental Section ...................................................13 2.1 Fabrication of AAO templates...................................................13 2.2 Synthesis of Cu3Ge nanowires...................................................16 2.2.1 Preparation of Cu3Ge bulk....................................................16 2.2.2 Fabrication of Cu3Ge nanowires via die-casting method........................18 2.2.3 Etching Cu3Ge nanowire from AAO template ....................................20 2.2.4 Annealing process of Cu3Ge nanowires by die-casting below the melting point..20 2.2.5 Fabrication of Cu3Ge nanowires devices.......................................21 2.3 Synthesis of Cu3Ge/Ge nanowires................................................23 2.3.1 Preparation of Cu3Ge/Ge bulk.................................................23 2.3.2 Fabrication of Cu3Ge/Ge nanowires via die-casting method ....................25 2.3.3 Etching Cu3Ge/Ge nanowires from AAO template.................................25 2.3.4 Annealing process of Cu3Ge/Ge nanowires .....................................26 2.3.5 Fabrication of Cu3Ge/Ge nanowires devices....................................26 2.4 Characteristic analysis of microstructure .....................................29 2.4.1 X-ray diffractometer ........................................................29 2.4.2 Raman spectrum ..............................................................29 2.4.3 Scanning electron microscope (SEM)...........................................30 2.4.4 Energy dispersive X-ray spectrometry (EDS)...................................30 2.4.5 Electron beam lithography (EBL) .............................................31 2.4.6 Electron gun evaporation (E-gun) ............................................31 Chapter 3 Results and Discussions..................................................33 3.1 Research motivation of Cu3Ge and Cu3Ge/Ge nanowires devices ...................33 3.2 Characteristics of Cu3Ge nanowires.............................................34 3.2.1 Observation of the Cu3Ge bulk and nanowires from SEM ........................34 3.2.2 XRD spectrum of Cu3Ge bulk and nanowires.....................................37 3.2.3 Raman spectrum of Cu3Ge bulk and nanowires...................................40 3.2.5 Electrical properties of Cu3Ge nanowires die-casting below the melting point (700 °C) by annealing in 550 oC for 12 hours ........................49 3.2.6 Electrical properties of Cu3Ge nanowires die-casting above the melting point (800 °C).............................................................63 3.3 Characteristics of Cu3Ge/Ge nanowires .........................................72 3.3.1 Observation of the Cu3Ge/Ge bulk and nanowires from SEM......................72 3.3.2 XRD spectrum of Cu3Ge/Ge bulk ...............................................78 3.3.3 Raman spectrum of Cu3Ge/Ge bulk .............................................81 3.3.4 Electrical properties of Cu3Ge/Ge nanowires..................................84 Chapter 4 Summary and Conclusion...................................................90 4.1 Cu3Ge nanowires devices with different annealed/die-casting conditions.........90 4.2 Cu3Ge/Ge nanowires devices.....................................................90 Chapter 5 Future Works.............................................................92 5.1 The detailed structure analysis of Cu3Ge nanowires die-casting below the melting point (700 °C).........................................................92 5.2 The detailed structure analysis of Cu3Ge nanowires die-casting above the melting point (800 °C).........................................................92 5.3 The detailed structure analysis of Cu3Ge/Ge nanowires and the electrical properties behavior.....................................................92 References.........................................................................94 Self-Introduction.................................................................106 Appendix..........................................................................107

    [1] Charles M Lieber, “One-dimensional nanostructures: chemistry, physics & applications”, Solid State Communications, 1998, 107, 607-616.
    [2] Younan Xia, Peidong Yang, Yugang Sun,Yiying Wu, Brian Mayers, Byron Gates, Yadong Yin, Franklin Kim, and Haoquan Ya, “Onedimensional nanostructures: synthesis, characterization, and applications”, Advanced Materials, 2003, 15, 5-12.
    [3] Jessica Weber, Rahul Singhal, Souhail Zekri and Ashok Kumar, “Onedimensional nanostructures: fabrication, characterisation and applications”, International Materials Review, 2008, 53, 235-255.
    [4] Wei-Hong Xu, Lei Wang, Zheng Guo, Xing Chen, Jinhuai Liu, and Xing-Jiu Huang, “Copper nanowires as nanoscale interconnects: their stability, electrical transport, and mechanical properties”, ACS Nano,2015, 9, 241-251.
    [5] Juncong She, Zhiming Xiao, Yuhua Yang, Shaozhi Deng, Jun Chen, Guowei Yang, and Ningsheng Xu, “Correlation between resistance and field emission performance of individual ZnO one-dimensional nanostructures”, ACS Nano, 2008, 2, 2015-2022.
    [6] Li-Qian Cheng, Jing-Feng Li, “A review on one dimensional perovskite nanocrystals for piezoelectric applications”, Journal of Materials, 2016, 2, 25-36.
    [7] Yong Sheng Zhao, Hongbing Fu, Aidong Peng, Ying Ma, Qing Liao, and Jiannian Yao, “Construction and optoelectronic properties of organic one-dimensional nanostructures”, Account of Chemical Research, 2010, 43, 409-418.
    [8] Youguo Yan, Lixia Zhou, Jun Zhang, Haibo Zeng, Ye Zhang, and Lide Zhang, “Synthesis and growth discussion of one-dimensional MgO nanostructures: nanowires, nanobelts, and nanotubes in vls mechanism”, American Chemical Society, 2008, 112, 10412-10417.
    [9] Abderrahim Moumen, Navpreet Kaur, Nicola Poli, Dario Zappa and Elisabetta Comini, “One dimensional ZnO nanostructures: growth and chemical sensing performances”, Nanomaterials, 2020, 10, 1940-1945.
    [10] N.H.Alvi, Wasied ul Hassan, B.Farooq, O.Nur, and M.Willander,“Influence of different growth environments on the luminescence properties of ZnO nanorods grown by the vapor–liquid–solid (VLS) method”, Materials Letters, 2013, 106, 158-163.
    [11] Marcelo Ornaghi Orlandi, Edson Roberto Leite, Rosiana Aguiar, Jefferson Bettini, and Elson Longo, “Growth of SnO nanobelts and dendrites by a self-catalytic vls process”, The Journal of Physical Chemistry B, 2006, 110, 6621-6625.
    [12] Shih-Hsun Chen, Chien-Chon Chen, Z.P. Luo, Chuen-Guang Chao, “Fabrication and characterization of eutectic bismuth–tin (Bi–Sn) nanowires”, Materials Letters, 2009, 63, 1165-1168.
    [13] Shih-Hsun Chen, Chiu-Yen Wang, Yung-Chang Chen, Chien-Wan Hun, Shih-Fan Chen, Sheng-Min Yang, “Fabrication of pure aluminum nanowires by using injection molding process in ambient air”, Materials Letters, 2015, 148, 30-33.
    [14] Shih Hsun Chena, Chien Chon Chenb, Chuen Guang Chao, “Novel morphology and solidification behavior of eutectic bismuth–tin (Bi–Sn) nanowires”, Journal of Alloys and Compounds, 2009, 481, 270-273.
    [15] Chien-Chon Chen, Y Bisrat, Z P Luo, R E Schaak, C-G Chao and D C Lagoudas, “Fabrication of single-crystal tin nanowires by hydraulic pressure injection”, Nanotechnology, 2006, 17, 367-374.
    [16] Rui Yang, Chunhong Sui, Jian Gong, Lunyu Qu, “Silver nanowires prepared by modified aao template method”, Materials Letters, 2007, 61, 900-903.
    [17] Y Bisrat, Z P Luo, D Davis and D Lagoudas, “Highly ordered uniform single-crystal Bi nanowires: fabrication and characterization”, Nanotechnology, 2007, 18, 395601.
    [18] Qiliang Weia, Yanqing Fua, Gaixia Zhanga, Dachi Yangb, Guowen Mengc, Shuhui Sun, “Rational design of novel nanostructured arrays based on porous AAO templates for electrochemical energy storage and conversion”, Nano Energy, 2019, 55, 234-259.
    [19] Mahboobeh Nazarian-Samani, Ali Reza Kamali, Masoud NazarianSamani, and Seyed Farshid Kashani-Bozorg, “Evolution and stability of a nanocrystalline Cu3Ge intermetallic compound fabricated by means of high energy ball milling and annealing processes”, Metallurgical and Materials Transactions A, 2015, 46, 516-524.
    [20] S. Oktyabrsky, M. O. Aboelfotoh, J. Narayan, and J. M. Woodall, “Cu3Ge ohmic contacts to n-type GaAs”, Journal of Electronic Materials, 1996, 25, 1662-1672.
    [21] R. W. Olesinski and G. J. Abbaschian, “The Cu−Ge (copper-germanium) system”, Bulletin of Alloy Phase Diagrams, 1986, 7, 28-35.
    [22] Kris A. Darling, R.K. Guduru, C. Lewis Reynolds Jr, Vikram M. Bhosle, Ryan N. Chan, Ronald O. Scattergood, Carl C. Koch, J. Narayan, M.O. Aboelfotoh, “Thermal stability, mechanical and electrical properties of nanocrystalline Cu3Ge”, Intermetallics, 2008, 16, 378-383.
    [23] Jianwen Liang, Xiaona Li, Zhiguo Hou, Jun Jiang, Lei Hu, Wanqun Zhang, Yongchun Zhu, and Yitai Qian, “A composite structure of Cu3Ge/Ge/C anode promise better rate property for lithium battery”, Small, 2016, 10, 02545.
    [24] J. Xiang, W. Lu, Y. J. Hu, Y. Wu, H. Yan and C. M. Lieber, “Ge/Si nanowire heterostructures as high-performance field-effect transistors”, Nature, 2006, 441, 489-493.
    [25] S. A. Dayeh, A. V. Gin and S. T. Picraux, “Electronic properties of hydrogenated silicene and germanene”, Applied Physics Letters, 2011, 98, 163112-163114.
    [26] D. W. Wang, Q. Wang, A. Javey, R. Tu, H. J. Dai, H. Kim, P. C. McIntyre, T. Krishnamohan and K. C. Saraswat, “Germanium nanowire field-effect transistors with SiO2 and high-κ HfO2 gate dielectrics”, Applied Physics Letters, 2003, 83, 2432-2434.
    [27] L. Y. Cao, P. Y. Fan, A. P. Vasudev, J. S. White, Z. F. Yu, W. S. Cai, J.
    A. Schuller, S. H. Fan and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers”, Nano Letters, 2010, 10, 439-445.
    [28] L. Y. Cao, J. S. Park, P. Y. Fan, B. Clemens and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors”, Nano Letters, 2010, 10, 1229-1233.
    [29] M. T. Yin and Marvin L. Cohen, “Theory of static structural properties, crystal stability, and phase transformations: application to Si and Ge”, The American Physical Society, 1982, 26, 5668-5687.
    [30] Aleksei Bytchkov, Gabriel J. Cuello, Shinji Kohara, Chris J. Benmore, David L. Pricee, and Eugene Bychkov, “Unraveling the atomic structure of Ge-rich sulfide glasses”, The Royal Society of Chemistry, 2013, 15, 8487-8494.
    [31] D.E.Polk, “Structural model for amorphous silicon and germanium”, Journal of Non-Crystalline Solids, 1971, 5, 365-376.
    [32] Selvarajan Nagendran and Herbert W. Roesky, “The chemistry of aluminum(I), silicon (II), and germanium (II)”, Organometallics, 2008, 27, 457-492.
    [33] Yoshiki Kamata, “High-k/Ge MOSFETs for future nanoelectronics”, Materials Today, 2008, 11, 30-38.
    [34] Ravi Pillarisetty, “Academic and industry research progress in germanium nanodevices”, Nature, 2011, 479, 324-328.
    [35] E.E. Haller, “Germanium: from its discovery to SiGe devices”, Materials Science in Semiconductor Processing, 2006, 9, 408-422.
    [36] D. M. Rowe, V. S. Shukla, and N. Savvides, “Phonon scattering at grain boundaries in heavily doped fine-grained silicon–germanium alloys”, Nature, 1981, 290, 765-766.
    [37] Patrick S. Goley and Mantu K. Hudait, “Germanium based field-effect transistors: challenges and opportunities”, Materials, 2014, 7, 2301-2339.
    [38] J. Bardeen and W. G. Pfann, “Effects of electrical forming on the rectifying barriers of n- and p-germanium transistors”, American Physical Society, 1950, 77, 401-402.
    [39] Matteo Bosi, Giovanni Attolini, “Germanium: epitaxy and its applications”, Progress in Crystal Growth and Characterization of Materials, 2010, 56, 146-147.
    [40] Qiu Hong Cui, Lang Jiang, Chuang Zhang, Yong Sheng Zhao, Wenping Hu, and Jiannian Yao, “Coaxial organic p-n heterojunction nanowire arrays: one-step synthesis and photoelectric properties”, Advanced Materials, 2012, 24, 2332-2336.
    [41] Erik Garnett, Liqiang Mai, and Peidong Yang, “Introduction: 1D nanomaterials/nanowires”, American Chemical Society, 2019, 119,8955-8957.
    [42] Genqiang Zhang, Qingxuan Yu, Wei Wang, and Xiaoguang Li, “Nanostructures for thermoelectric applications: synthesis, growthmechanism, and property studies”, Advanced Materials, 22, 1959-1962.
    [43] Sven Barth, Francisco Hernandez-Ramirez, Justin D. Holmes, AlbertRomano-Rodriguez, “Synthesis and applications of one-dimensionalsemiconductors”, Progress in Materials Science, 2010, 55, 563-627.
    [44] A.G. Milnes, “Semiconductor heterojunction topics: introduction and overview”, Solid-State Electronics, 1986, 2, 99-121.
    [45] Liping Zhang, Mietek Jaroniec, “Toward designing semiconductorsemiconductor heterojunctions for photocatalytic applications”, Applied Surface Science, 2018, 430, 2-17.
    [46] Rüdeger Köhler, Alessandro Tredicucci, Fabio Beltram, Harvey E.Beere, Edmund H. Linfield, A. Giles Davies, David A. Ritchie, Rita C.Iotti, and Fausto Rossi “Terahertz semiconductor-heterostructure laser”, Nature, 2002, 417,156-159.
    [47] Haiyan Zheng, Yongjun Li, Huibiao Liu, Xiaodong Yin, and Yuliang Li,“Construction of heterostructure materials toward functionality”, Chemical Society Reviews, 2011, 40, 4506-4524.
    [48] Huanli Wang, Lisha Zhang, Zhigang Chen, Junqing Hu, Shijie Li, Zhaohui Wang, Jianshe Liu and Xinchen Wang, “Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances”, The Royal Society of Chemistry, 43, 5234-5244.
    [49] Jum Suk Jang, Hyun Gyu Kim, Jae Sung Lee, “Heterojunction semiconductors: a strategy to develop efficient photocatalytic materials for visible light water splitting”, Catalysis Today, 2012, 185,270-277.
    [50] Dhiraj Sinha and Ji Ung Lee, “Ideal graphene/silicon Schottky junction diode”, Nano Letters, 2014, 14, 8, 4660-4664.
    [51] Zhenxue Xu, Bo Zhang, and Alex Q. Huang, “An analysis and experimental approach to MOS controlled diodes behavior”, Transactions on Power Electronics, 2000, 15,916-922.
    [52] H. C. Card and E. H. Rhoderick, “Studies of tunnel MOS diodes I. interface effects in silicon schottky diodes”, Applied Physics, 1971, 4, 1589.
    [53] M. P. Lepselter, S. M. Sze, “Silicon schottky barrier diode with nearideal I-V characteristics”, Bell System Technical Journal, 1968, 47, 195-208.
    [54] M. Asif Khan, X. Hu, A. Tarakji, G. Simin, J. Yang, R. Gaska, and M.S. Shur, “AlGaN/GaN metal–oxide–semiconductor heterostructure field-effect transistors on SiC substrates”, Applied Physics Letters, 2000, 77, 1339-1341.
    [55] M.A. Khan, X. Hu; G. Sumin, A. Lunev, J. Yang, R. Gaska, M.S. Shur,
    “AlGaN/GaN metal oxide semiconductor heterostructure field effect transistor”, Electron Device Letters, 2000, 21, 63-65.
    [56] David D. Nolte, “Semi-insulating semiconductor heterostructures:Optoelectronic properties and applications”, Journal of Applied Physics, 1999, 85, 6259-6289.
    [57] R.R. Schaller, “Moore's law: past, present and future”, IEEE Spectrum, 1997, 34, 52-59.
    [58] Chris A. Mack, Fellow, “Fifty years of Moore’s law”, IEEE Transactions on Semiconductor Manufacturing, 2011, 24, 2, 2011.
    [59] Thomas N. Theis, H.-S. Philip Wong, “The end of Moore's law: a new beginning for information technology”, Computing in Science & Engineering, 2017, 19, 41-50.
    [60] Robert W. Keyes, “Moore's Law today”, IEEE Circuits and Systems Magazine, 2008, 8, 53-54.
    [61] Shan-Chun Hsu, Cheng-Lun Hsin, Chun-Wei Huang, Shih-Ying Yu, Chun-Wen Wang, Chi-Ming Lu, Kuo-Chang Lu, and Wen-Wei Wu, “Single-crystalline Ge nanowires and Cu3Ge/Ge nano heterostructures”, The Royal Society of Chemistry, 2012, 14, 4570-4574.
    [62] T. Burchhart, A. Lugstein, Y. J. Hyun, G. Hochleitner, and E.Bertagnolli, “Atomic-scale alignment of copper-germanide contacts for Ge nanowire metal oxide field effect transistors”, Nano Letters, 2009, 9, 3739-3742.
    [63] Guangyu Zhang, Pengfei Qi, Xinran Wang, Yuerui Lu, Xiaolin Li, Ryan Tu, Sarunya Bangsaruntip, David Mann, Li Zhang, and Hongjie Dai, “Selective etching of metallic carbon nanotubes by gas-phase reaction”, Science, 2006, 314, 974-977.
    [64] Younan Xia, Xiao-Mei Zhao, Enoch Kim, and George M. Whitesides, “A selective etching solution for use with patterned self-assembled monolayers of alkanethiolates on gold”, American Chemical Society, 1995, 7, 2332-2337.
    [65] Jinquan Huang, Sing Yang Chiam, Hui Huang Tan, Shijie Wang, and Wai Kin Chim, “Fabrication of silicon nanowires with precise diameter control using metal nanodot arrays as a hard mask blocking material in chemical etching”, Chemistry of Materials, 2010, 22, 4111-4116.
    [66] Yu Chen, Hangrong Chen, Limin Guo, Qianjun He, Feng Chen, Jian Zhou, Jingwei Feng, and Jianlin Shi, “Hollow/rattle-type mesoporous nanostructures by a structural difference-based selective etching strategy”, ACS Nano, 2010, 4, 529-539.
    [67] Renxian Zou, Xia Guo, Jian Yang, Dandan Li, Feng Peng, Lei Zhang, Hongjuan Wanga and Hao Yua, “Selective etching of gold nanorods by ferric chloride at room temperature”, The Royal Society of Chemistry, 2009, 11, 2797-2803.
    [68] Keren J. Kanarik, Thorsten Lill, Eric A. Hudson, Saravanapriyan Sriraman, Samantha Tan, Jeffrey Marks, Vahid Vahedi, Richard A.Gottscho, “Overview of atomic layer etching in the semiconductor industry”, Journal of Vacuum Science & Technology A 2015, 33, 1-14.
    [69] Che-Yi Lin, Chao-Fu Chen, Yuan-Ming Chang, Shih-Hsien Yang, Ko-Chun Lee, Wen-Wei Wu, Wen-Bin Jian, and Yen-Fu Lin, “A Triode Device with a Gate Controllable Schottky Barrier: Germanium Nanowire Transistors and Their Applications”, Small, 2019, 1-8.
    [70] L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima et al, “Silicon nanowire solar cells”, Applied Physical Letters, 2007, 91, 1-3.
    [71] Johannes Svensson, Anil W. Dey, Daniel Jacobsson, and Lars-Erik Wernersson, “III-V nanowire complementary metal-oxide-semiconductor transistors monolithically integrated on Si”, Nano Letters, 2015, 15, ,7898-7904.
    [72] A S Walton, C S Allen, K Critchley, M Ł Górzny, J E McKendry, R M D Brydson, B J Hickey and S D Evans, “Four-probe electrical transport measurements on individual metallic nanowires”, Nanotechnology, 2007, 18, 060254.
    [73] FanWu, WeiCai, JiaGao, Yueh-Lin Loo & NanYao, “Nanoscale electrical properties of epitaxial Cu3Ge film”, Sientific Reports, 2016, 6, 28818-28828.
    [74] J.S. Fang, C.J. Cai, J.H. Lee, T.S. Chin, “Phase formation and stability of Cu-Ge films with low electrical resistivity”, Thin Solid Films, 2015, 584, 228-231.
    [75] Chao Wang, Yongjie Hu, Charles M. Lieber, and Shouheng Sun, “Ultrathin Au nanowires and their transport properties”, Journal of the American Chemical Society, 2008, 130, 8902-8903.
    [76] Yung-Chen Lin, Kuo-Chang Lu, Wen-Wei Wu, Jingwei Bai, Lih J. Chen, K. N. Tu, and Yu Huang, “Single crystalline PtSi nanowires, PtSi/Si/PtSi nanowire heterostructures, and nanodevices”, Nano Letters. 2008, 8, 3, 913-918.
    [77] Xiaohua Liu, Jing Zhu, Chuanhong Jin, Lian-Mao Peng, Daiming Tang and Huiming Cheng, “In situ electrical measurements of polytypic silver nanowires”, Nanotechnology, 2008, 19, 085711.
    [78] J H He, P H Chang, C Y Chen and K T Tsai, “Electrical and optoelectronic characterization of a ZnO nanowire contacted by focused-ion-beam-deposited Pt”, Nanotechnology, 2009, 20, 135701.
    [79] Ching-Yen Lin, Chiu-Yen Wang, Min-Hsiu Hung, Tzu-Ling Liu, and Tri-Rung Yew, “Low resistivity tin-doped copper nanowires”, IEEE Electron Device Letters, 2013, 34, 529-531.
    [80] Jianshi Tang, Chiu-Yen Wang, Min-Hsiu Hung,Xiaowei Jiang, Li-Te Chang, Liang He, Pei-Hsuan Liu, Hong-Jie Yang, Hsing-Yu Tuan, LihJuann Chen, and Kang L. Wang, “Ferromagnetic germanide in Ge nanowire transistors for spintronics application”, ACS Nano 2012, 6, 5710-5717.
    [81] Dunwei Wang, Qian Wang, Ali Javey, Ryan Tu, and Hongjie Dai,“Germanium nanowire field-effect transistors with SiO2 and high-κ HfO2 gate dielectrics”, Applied Physics Letters, 2003, 83, 2432-2434.

    QR CODE