簡易檢索 / 詳目顯示

研究生: 蘇偉誌
Wei-jhih Su
論文名稱: 以二硫化鉬/石墨烯及二硒化鉬/石墨烯製作異質接面二極體及其電性量測之研究
Study of fabrication and electronic characteristics of MoS2/graphene and MoSe2/graphene pn heterojunction diodes
指導教授: 李奎毅
Kuei-yi Lee
口試委員: 黃鶯聲
Ying-sheng Huang
邱博文
Po-wen Chiu
趙良君
Liang-chiun Chao 
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 61
中文關鍵詞: 二硫化鉬二硒化鉬石墨烯pn異質接面二極體
外文關鍵詞: MoS2, MoSe2, Graphene, pn heterojunction, Diode
相關次數: 點閱:344下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今,二維原子級薄膜奈米材料的結合是相當重要的發展趨勢,特別是二維材料的異質接面更是目前新興發展重點。本計畫致力於將同為二維材料的石墨烯與過渡金屬硫化物做異質接面的結合並深入探討其接面特性,應用於二極體元件。石墨烯為目前最薄二維結構材料,此材料擁有良好的熱導電性及高載子遷移率等特性。本計畫以熱化學氣相沉積法方式,利用甲烷作為碳源成長石墨烯於銅箔基板上,可隨著銅箔基板的大小控制其尺寸,成長出具有高品質且大面積的石墨烯,並藉由摻雜方式可精準控制石墨烯費米能階,使石墨烯由零能隙材料轉變為具有能隙的p型或n型半導體材料。利用石墨烯具有高比表面積、高載子遷移率及超薄的特性可與n型材料結合製作pn接面。另一方面,類石墨烯的過渡金屬硫化物薄膜則是目前半導體材料的發展潛力,單層過渡金屬硫化物厚度與石墨烯相近,是具有良好的機械強度與高載子遷移率的n型半導體材料,利用化學氣相轉換法成長單晶過渡金屬硫化物(二硫化鉬及二硒化鉬)塊材,並以機械剝離法控制材料厚度,過渡金屬硫化物厚度越薄則能隙越大。結合兩者特性,製作異質接面二極體元件,藉由改變兩種材料的能隙控制其障壁電位。結合兩種材料優點,製作超薄且高靈敏度異質pn接面,並進一步封裝異質接面二極體元件,整理歸納其量測資料庫,深入研究二維材料延伸應用,對我國半導體產業必有良好貢獻。


    The two-dimensional nano-material heterojunction combination has recently become an important trend in component development. In this project we combine (I) MoS2 and graphene and (II) MoSe2 and graphene (both two-dimensional materials) to produce a heterojunction and exhaustively study the interface property for heterojunction diode applications. Graphene is presently the thinnest two-dimensional material with good thermal conductivity and high carrier mobility. We used CH4 as the carbon source to grow high quality, large-area graphene onto a copper foil substrate. The graphene size was controlled using thermal chemical vapor deposition. The graphene Fermi level can be precisely controlled using the oxygen adsorption. Graphene can be tuned from zero-gap to p-type semiconductor material using the amount of adsorbed oxygen. MoS2 and MoSe2 films are currently the semiconductor materials with the most potential. Few-layer MoS2 (MoSe2) is an n-type semiconductor that has good mechanical strength, high carrier mobility, and has similar thickness as graphene. The MoS2 (MoSe2) band-gap increases with decreasing thickness when the chemical vapor transport method is used to grow bulk single-crystal MoS2 (MoSe2) with mechanical exfoliation to control the material thickness. Heterojunction diode components can be fabricated by combining the properties of MoS2 and graphene. The potential barrier can be controlled by. Combining the advantages of these two materials, we fabricated ultra-thin hetero pn junction and grouped the measured data into the database. Any in-depth study of two-dimensional material extended applications will contribute to the semiconductor industry.

    Abstract (in Chinese) ---------------------------------------------------------I Abstract (in English) --------------------------------------------------------II Acknowledgment --------------------------------------------------------------III Contents ---------------------------------------------------------------------IV Figure Captions --------------------------------------------------------------VI Table List --------------------------------------------------------------------X Chapter 1 Introduction --------------------------------------------------------1 1.1 Graphene --------------------------------------------------------------1 1.1.1 History ---------------------------------------------------------------1 1.1.2 Crystal structure -----------------------------------------------------2 1.1.3 Band structure --------------------------------------------------------5 1.1.4 Phonon dispersion -----------------------------------------------------6 1.1.5 Raman spectroscopy ----------------------------------------------------7 1.1.6 Synthesis of graphene -------------------------------------------------9 1.1.7 p-type graphene-------------------------------------------------------11 1.2 Transition metal dichalcogenides -------------------------------------12 1.2.1 Background -----------------------------------------------------------12 1.2.2 Molybdenum disulfide -------------------------------------------------13 1.2.3 Molybdenum diselenide ------------------------------------------------14 1.2.4 Raman spectroscopy----------------------------------------------------15 1.2.5 Synthesis-------------------------------------------------------------16 1.3 The p-n junction diode -----------------------------------------------18 1.3.1 Background -----------------------------------------------------------18 1.3.2 Operation ------------------------------------------------------------18 1.3.3 Heterojunction--------------------------------------------------------19 1.4 Motivation------------------------------------------------------------21 1.4.1 Heterojunction diode--------------------------------------------------21 1.4.2 Graphene and MoX2 (X = S, Se) p-n junction diode Structure------------21 Chapter 2 Experimental methods -----------------------------------------------23 2.1 Experimental Procedure flow chart ------------------------------------23 2.2 Manufacturing procedure ----------------------------------------------24 2.2.1 Substrate preparation ------------------------------------------------24 2.2.2 The MoS2 and MoSe2 single crystals growth ----------------------------24 2.2.3 MoS2 and MoSe2 film preparation and transfer -------------------------26 2.2.4 Synthesis of p-type graphene -----------------------------------------26 2.2.5 Graphene transfer ----------------------------------------------------29 2.2.6 Fabricated p-n junction diode ----------------------------------------30 2.3 Analysis and Characterization ----------------------------------------31 2.3.1 High-Resolution Transmission Electron Microscopy (HRTEM)--------------31 2.3.2 Raman Spectroscopy ---------------------------------------------------32 2.3.3 X-ray Photoelectron Spectroscopy (XPS) -------------------------------33 2.3.4 Current-voltage characteristics measurement --------------------------33 Chapter 3 Results and Discussion ---------------------------------------------35 3.1 Transition metal dichalcogenides -------------------------------------35 3.1.1 Molybdenum disulfide -------------------------------------------------35 3.1.2 Molybdenum diselenide ------------------------------------------------38 3.2 p-type Graphene ------------------------------------------------------40 3.3 p-n junction diodes measurement --------------------------------------43 3.4 Bandgap of graphene, MoS2, and MoSe2 ---------------------------------46 Chapter 4 Conclusions --------------------------------------------------------50 Reference --------------------------------------------------------------------51 Publication List -------------------------------------------------------------59

    [1] H. Gao, L. Song, W. Guo, L. Huang, D. Yang, F. Wang, Y. Zuo, X. Fan, Z. Liu, W. Gao, R. Vajtai, K. Hackenberg, and P. M. Ajayan, “A simple method to synthesize continuous large area nitrogen-doped graphene,” Carbon, vol. 50, pp. 4476-4482, 2012.
    [2] F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, K. and S. Novoselov, “Detection of individual gas molecules adsorbed on graphene,” Nature Mater., vol. 6, pp. 652-655, 2007.
    [3] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science, vol. 306, pp. 666-669, 2004.
    [4] K. S. Novoelov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, “Two-dimensional atomic crystals,” Proc. Natl Acad. Sci. USA, vol. 102, pp. 10451-10453, 2005.
    [5] A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater., vol. 6, pp. 183-191, 2007.
    [6] M. S. Dresselhaus and P. T. Araujo, “Perspectives on the 2010 Nobel Prize in physics for graphene,” ACS Nano, vol. 4, pp. 6297-6302, 2010.
    [7] S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, “Giant intrinsic carrier mobilities in graphene and its bilayer,” Phys. Rev. Lett., vol. 100, pp. 016602-1-016602-4, 2008.
    [8] K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun., vol. 146, pp. 351-355, 2008.
    [9] K. S. Novoselov, E. McCann, S. V. Morosov, V. I. Falko, M. I. Katsnelson, U. Zeitler, D. Jiang, F. Schedin, and A. K. Geim, “Unconventional quantum Hall effect and Berry’s phase of 2π in bilayer graphene,” Nature, vol. 2, pp. 177-180, 2006.
    [10] X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett., vol. 9, pp. 4359-4363, 2009.
    [11] A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys., vol. 81, pp. 109-162, 2009.
    [12] J. Hass, W. A. de Heer, and E. H. Conrad, “The growth and morphology of epitaxial multilayer graphene,” J. Phys. Cond. Matter, vol. 20, pp. 323202-323228, 2008.
    [13] J. C. Charlier, J. P. Michenaud, and X. Gonze, “First-principles study of the electronic properties of simple hexagonal graphite,” Phys. Rev. B, vol. 46, pp. 4531-4540, 1992.
    [14] J. D. Bernal, “The structure of graphite,” Proc. R. Soc. Lond. A, vol. 106, pp. 749-773, 1924.
    [15] J. H. Warner, M. Mukai, and A. I. Kirkland, “Atomic structure of ABC rhombohedral stacked trilayer graphene,” ACS Nano, vol. 6, pp. 5680-5686, 2012.
    [16] P. R. Wallace, “The band theory of graphite,” Phys. Rev., vol. 71 pp. 622-634, 1947.
    [17] P. Avouris, “Graphene: electronic and photonic properties and devices,” Nano Lett., vol. 10, pp. 4285-4294, 2010.
    [18] F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photon., vol. 4, pp. 611-622, 2010.
    [19] R. Saito, A. Jorio, A. G. Souza-Filho, G. Dresselhaus, M. S. Dresselhaus, and M. A. Pimenta, “Probing phonon dispersion relations of graphite by double resonance Raman scattering,” Phys. Rev. Lett., vol. 88, pp. 027401-1-027401-4, 2002.
    [20] L. M. Malard, M. A. Pimenta, G. Dresslhaus, and M. S. Dresslhaus, “Raman spectroscopy in graphene,” Phys. Rep., vol. 473, pp. 51-87, 2009.
    [21] M. Mohr, J. Maultzsch, E. Dobardžić, S. Reich, I. Milošević, M. Damnjanović, A. Bosak, M. Krisch, and C. Thomsen, “Phonon dispersion of graphite by inelastic x-ray scattering,” Phys. Rev. B, vol. 76, pp. 035439-1-035439-7, 2007.
    [22] S. Reich and C. Thomsen, “Raman spectroscopy of graphite,” Philos. Trans. R. Soc. Lond. A, vol. 362, pp. 2271-2288, 2004.
    [23] M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, and R. Saito, “Perspectives on carbon nanotubes and graphene Raman spectroscopy,” Nano Lett., vol. 10, pp. 751-758, 2010.
    [24] C. Soldano, A. Mahmood, and E. Dujardin, “Production, properties and potential of graphene,” Carbon, vol. 48, pp. 2127-2150, 2010.
    [25] Z. Sun, D. K. James, and J. M. Tour, “Graphene chemistry: synthesis and manipulation,” J. Phys. Chem. Lett., vol. 2, pp. 2425-2432, 2011.
    [26] C. Mattevi, H. Kim, and M. Chhowalla, “A review of chemical vapor deposition of graphene on copper,” J. Mat. Chem., vol. 21, pp. 3324-3334, 2011.
    [27] M. Acik and Y. J. Chabal, “A review on thermal exfoliation of graphene oxide,” J. Mater. Sci. Res., vol. 2, pp. 101-112, 2013.
    [28] I. Jung, D. A. Field, N. J. Clark, Y. Zhu, D. Yang, R. D. Piner, S. Stankovich, D. A. Dikin, H. Geisler, C. A. Ventrice, Jr., and R. S. Ruoff, “Reduction kinetics of graphene oxide determined by electrical transport measurements and temperature programmed desorption,” J. Phys. Chem. C, vol. 113, pp. 18480-18486, 2009.
    [29] D. W. Boukhvalov and M. I. Katsnelson, “Modeling of graphite oxide,” J. Am. Chem. Soc., vol. 130, pp. 10697-10701, 2008.
    [30] H.-M. Huang, Z.-B. Li, J.-C. She, and W.-L. Wang, “Oxygen density dependent band gap of reduced graphene oxide,” J. Appl. Phys., vol. 111, pp. 054317, 2012.
    [31] W. J. Schutte, J. L. De Boer, and F. Jellinek, “Crystal Structures of Tungsten Disulfide and Diselenide,” J. Solid State Chem., vol. 70, pp. 207-209, 1987.
    [32] W. Jaegermann and H. Tributsch, “Interfacial properties of semiconducting transition metal chalcogenides,” Progress Surf. Sci., vol. 29, pp. 1-167, 1988.
    [33] G. A. N. Connell, J. A. Wilson, and A. D. Yoppe, “Effects of pressure and temperature on exciton absorption and band structure of layer crystals: Molybdenum disulphide,” J. Phys. Chem. Solids, vol. 30, pp. 287-296, 1969.
    [34] A. F. Wells, “Structures based on the 3-connected net 103-b,” J. Solid State Chem., vol. 54, pp. 378-388, 1984.
    [35] T. Bartels, W. Bock, J. Braun, C. Busch, W. Buss, W. Dresel, C. Freiler, M. Harperscheid, R. P. Heckler, D. Horner, F. Kubicki, G. Lingg, A. Losch, R. Luther, T. Mang, S. Noll, and J. Omeis, “Lubricants and lubrication,” Ullmann's Encyclopedia Ind. Chem., 2003.
    [36] R. Tenne and M. Redlich, “Recent progress in the research of inorganic fullerene-like nanoparticles and inorganic nanotubes,” Chem. Soc. Rev., vol. 39, pp. 1423-1434, 2010.
    [37] S.-W. Han, H. Kwon, S.-K. Kim, S. Ryu, W.-S. Yun, D.-H. Kim, J.-H. Hwang, J.-S. Kang, J. Baik, H.-J. Shin, and S.-C. Hong, “Band-gap transition induced by interlayer van der Waals interaction in MoS2,” Phys. Rev. B, vol. 84, pp. 045409, 2011.
    [38] N. N. Greenwood and A. Earnshaw, Chemistry of the elements, 2nd ed. Butterworth–Heinemann, 1997.
    [39] Q.-H. Wang, K. Z. Kourosh, K. Andras, N. C. Jonathan, and S. S. Michael, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnology, vol. 7, pp. 699-712, 2012.
    [40] P. A. Parilla, A. C. Dillon, B. A. Parkinson, K. M. Jones, J. Alleman, G. Riker, D. S. Ginley, and M. J. Heben, “Formation of nanooctahedra in molybdenum disulfide and molybdenum diselenide using pulsed laser vaporization,” J. Phys. Chem. B, vol. 108, pp. 6207-4031, 2004.
    [41] C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, “Anomalous lattice vibrations of single and fewlayer MoS2.,” ACS Nano, vol. 4, pp. 2695–2700, 2010.
    [42] J. Verble and T. Wieting, “Lattice mode degeneracy in MoS2 and other layer compounds,” Phys. Rev. Lett., vol. 25, pp. 362–365, 1970.
    [43] G. Frey, R. Tenne, M. Matthews, M. Dresselhaus, and G. Dresselhaus, “Raman and resonance Raman investigation of MoS2 nanoparticles,” Phys. Rev. B, vol. 60, pp. 2883–2892, 1999.
    [44] T. Wieting and J. Verble, “Infrared and Raman studies of long-wavelength optical phonons in hexagonal MoS2,” Phys. Rev. B, vol. 3, pp. 4286–4292, 1971.
    [45] C. Ataca, M. Topsakal, E. Akturk, and S. Ciraci, “A comparative study of lattice dynamics of three- and two-dimensional MoS2,” J. Phys. Chem. C, vol. 115, pp. 16354–16361, 2011.
    [46] T. Korn, S. Heydrich, M. Hirmer, J. Schmutzler, and C. Schuller, “Low-temperature photocarrier dynamics in monolayer MoS2,” Appl. Phys. Lett., vol. 99, pp. 102109, 2011.
    [47] H. Li, Q. Zhang, C. C. R. Yap, B. K. Tay, T. H. T. Edwin, A. Olivier, and D. Baillargeat, “From bulk to monolayer MoS2: evolution of Raman scattering,” Adv. Funct. Mater., vol. 22, pp. 1385–1390, 2012.
    [48] A. Molina-Sanchez and L. Wirtz, “Phonons in single-layer and few-layer MoS2 and WS2,” Phys. Rev. B, vol. 84, pp. 155413, 2011.
    [49] T. Sekine, M. Izumi, T. Nakashizu, K. Uchinokura, and E. Matsuura, “Raman scattering and infrared reflectance in 2H-MoSe2,” J. Phys. Soc. Jpn., vol. 49, pp.1069–1077, 1980.
    [50] T. J. Wieting, A. Grisel, and F. Levy, “Interlayer bonding and localized charge in MoSe2 and α-MoTe2,” Physica B+C, vol. 99, pp. 337–342, 1980.
    [51] S. Sugai and T. Ueda, “High-pressure Raman spectroscopy in the layered materials 2H-MoS2, 2H-MoSe2, and 2H-MoTe2,” Phys. Rev. B, vol. 26, pp. 6554–6558, 1982.
    [52] Y. Ding, Y. Wang, J. Ni, L. Shi, S. Shi, and W. Tang, “First principles study of structural, vibrational and electronic properties of graphene-like MX2 (M=Mo, Nb, W, Ta; X=S, Se, Te) monolayers,” Physica B, vol. 406, pp. 2254–2260, 2011.
    [53] M. Regula, C. Ballif, and F. Levy, Polycrystalline Semiconductors IV – Physics, Chemistry and Technology, Switzerland: Trans Tech, Zug, 1995.
    [54] A. K. Rai, R. S. Bhattacharya, J. S. Zabinski, and K. Miyoshi, “A comparison of the wear life of as-deposited and ion-irradiated WS2 coatings,” Surf. Coat. Technol., vol. 92, pp. 120-128, 1997.
    [55] M. Genut, L. Margulis, R. Tenne, and G. Hodes, “Effect of substrate on growth of WS2 thin films,” Thin Solid Films, vol. 217, pp. 30-36, 1992.
    [56] A. J. Waldau, M. Ch. L. Steiner, G. J. Waldau, and E. Bucher, “WS2 thin films prepared by sulphurization,” Appl. Surf. Sci., vol. 70-71, pp. 731-736, 1993.
    [57] Y. Feldman, G. L. Frey, M. Homyonfer, V. Lyakhovitskaya, L. Margulis, H. Cohen, G. Hodes, J. L. Hutchison, and R. Tenne, “Bulk synthesis of inorganic fullerene-like MS2 (M ) Mo, W) from the respective trioxides and the reaction mechanism,” J. Am. Chem. Soc., vol. 118, pp. 5362-5367, 1996.
    [58] K. Ellmer, C. Stock, K. Diesner, and I. Sieber, “Deposition of ci-oriented tungsten disulfide (WS2) films by reactive DC magnetron sputtering from a W-target in Ar/H2S,” J. Cryst. Growth, vol. 182, pp. 389-393, 1997.
    [59] K. Ellmer, R. Mientus, S. Seeger, and V. Wei, “Highly (001)-textured WS2–x films prepared by reactive radio frequency magnetron sputtering,” Phys. Stat. Sol. (a), vol. 201, pp. R97-P100, 2004.
    [60] Y.-F. Chen, J.-Y. Xi, D. O. Dumcenco, Z. Liu, K. Suenaga, D. Wang, Z. Shuai, Y.-S. Huang, and L.-M. Xie, “Tunable band gap photoluminescence from atomically thin transition-metal dichalcogenide alloys,” ACS Nano, vol. 7, pp. 4610-4616, 2013.
    [61] Y.-C. Jian, D.-Y. Lin, J.-S. Wu, and Y.-S. Huang, “Optical and electrical properties of Au- and Ag-doped ReSe2,” J. J. Appl. Phys., vol. 52, pp. 04CH06, 2013.
    [62] M. Riordan and H. Lillian, Crystal fire: the invention of the transistor and the birth of the information age. USA: W. W. Norton and Company, pp. 88-97, 1988.
    [63] J. R. Hook and H. E. Hall, “Orbital dynamics of 3He-A in the presence of a heat flow and a magnetic field,” J. Phys.C, vol. 12, pp. 783-800, 1979.
    [64] S. Sze, Semiconductor devices physics and technology. Toronto: John Wiley and Sons, 1995.
    [65] M. Burghard, H. Klauk, and K. Kern, “Carbon-based field-effect transistors for nanoelectronics,” Adv. Mater., vol. 21, pp. 2586-2600, 2009.
    [66] J. B. Oostinga, H. B. Heersche, X. Liu, A. F. Morpurgo, and L. M. K. Vandersypen, “Gate-induced insulating state in bilayer graphene devices,” Nature Mater., vol. 7, pp. 151-157, 2008.
    [67] H. Wang, T. Maiyalagan, and X. Wang, “Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications,” ACS Catal., vol. 2, pp. 781-794, 2012.
    [68] S. Tongay, J. Zhou, C. Ataca, K. Lo, T. S. Matthews, J. Li, J. C. Grossman, and J. Wu, “Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2,” Nano Lett., vol. 12, pp. 5576-5580, 2012.
    [69] P. Tonndorf, R. Schmidt, P. Bottger, X. Zhang, J. Borner, A. Liebig, M. Albrecht, C. Kloc, O. Gordan, D. R. T. Zahn, S. Michaelis de Vasconcellos, and R. Bratschitsch, “Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2,” Opt. Express, vol. 21, pp. 4908-4916, 2013.
    [70] Z.-W. Liang, X. Cai, S.-Z. Tan, P. Yang, L. Zhang, X. Yu, K. Chen, H. Zhu, P. Liu, and W. Mai, “Fabrication of n-type ZnO nanowire/graphene/p-type silicon hybrid structures and electrical properties of heterojunctions,” Phys. Chem. Chem. Phys., vol. 14, pp. 16111-16114, 2012.
    [71] S.-P. Chang and T.-H. Chang, “Use of the thermal chemical vapor deposition to fabricate light-emitting diodes based on ZnO nanowire/p-GaN heterojunction,” J. Nanomaterials., vol. 1, pp. 1-4, 2011.
    [72] L. Qin, D. Shao, C. Shing, and S. Sawyer, “Wavelength selective p-GaN/ZnO colloidal nanoparticle heterojunction photodiode,” Appl. Phys. Lett., vol. 102, pp. 071106, 2013.

    無法下載圖示 全文公開日期 2019/01/23 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE