簡易檢索 / 詳目顯示

研究生: 盧偉峻
Wei-Jun Lu
論文名稱: 不同強度鹼激發膠結材混凝土工程性質之探討
Study on Engineering Properties of Alkali Activated Binder Concrete with Different Strengths
指導教授: 張大鵬
Ta-Peng Chang
口試委員: 黃兆龍
Chao-Lung Hwang
陳君弢
Chun-tao Chen
林宜清
Yi-Ching Lin
施正元
Jeng-Ywan Shih
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 201
中文關鍵詞: 鹼激發混凝土工程性質應力應變曲線裂縫衍生行為。
外文關鍵詞: alkali activated binder concrete (AAC), engineering properties, stress-strain relationship, crack propagation
相關次數: 點閱:229下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究為探討三種低中高不同抗壓強度(30、45及60 MPa)鹼激發膠結材混凝土(alkali activated binder concrete, AAC)及卜特蘭水泥(OPC)混凝土作為對照組之新拌性質(坍度、坍流度、單位重、凝結時間)、硬固性質(抗壓強度、超音波波速、熱傳導係數)、工程性質(彈性模數、卜松比)及完整應力應變曲線。
研究結果顯示:(1) 新拌性質之漿體係數與水固(灰)比下降時,坍度與坍流度亦會下降,坍度值為90至245 mm,坍流度值為205至615 mm;而單位重由2347.80提高至2435.46 kg/m3,凝結時間皆會變快,初凝時間為28至178 min,終凝時間為45至418 min。(2) 硬固性質在低強度組來說,抗壓強度、超音波速與熱傳導係數會隨著漿體係數與水固(灰)比降低而升高。在中強度與高強度組時,抗壓強度、超音波速與熱傳導係數會隨著漿體係數降低而下降,但隨水固(灰)比降低而升高。齡期28天時抗壓強度範圍為26.77至66.18 MPa。齡期28天時超音波速範圍為4316至4812 m/s。齡期28天時熱傳導係數範圍為1.49至1.96 W/m.K。(3) 在相似抗壓強度下,OPC混凝土之彈性模數會高於AAC混凝土,在低強度組提高14.4 %,中強度組提高16.6 %,高強度組提高38.2 %。(4) AAC混凝土之尖峰強度與水固比成反比,水固比0.3與0.4之尖峰強度與0.5相較之下,其增減率為95.9與56.5 %。(5) AAC混凝土之尖峰應變與抗壓強度成正比,範圍介於0.00219 ~ 0.00290,與OPC混凝土相比之下,於低強度組低13.7 %,中強度組低1.1 %,高強度組低3.1 %。(6) AAC混凝土與OPC混凝土在相似之抗壓強度之應力應變圖,可觀察出無論在低、中或高強度組,OPC混凝土之峰後行為皆為較韌性呈現,而AAC混凝土在過尖峰強度發展皆較陡,屬於脆性行為表現。(7) 於相似抗壓強度下,AAC混凝土之第一道裂縫所產生之時間會晚於OPC混凝土,於低強度組慢15分鐘,中強度組慢30分鐘,高強度組慢30分鐘。(8) 於相似抗壓強度下,AAC混凝土與OPC混凝土當強度提高時,應變回彈之時間點也會更早,於低強度組為195分鐘發生,中強度組為165分鐘發生,高強度組為120分鐘發生。


This study aims to investigate the fresh properties of Alkali Activated Binder Concrete (AAC) (slump, slump flow, unit weight and setting time), the properties of hardened concrete (compressive strength, ultrasonic pulse velocity and thermal conductivity), engineering properties (Young’s modulus and Poisson ratio) and stress-strain relationship with different strengths; moreover, the Ordinary Portland Cement Concrete (OPC) is a comparable group.
Experimental results showed that: (1) Slump and slump flow were decreased by decreasing water-to-solid ratio and binder coefficient, where the range of slump was from 90 to 245 mm and slump flow was from 205 to 615 mm. In addition, the unit weight was increased, where the range was from 2347.80 to 2435.46 kg/m3. Moreover, the setting time was decreased in the mean time, where the range of initial setting time was from 28 to 178 minutes and final setting time was from 45 to 418 minutes. (2) The compressive strength, ultrasonic pulse velocity and thermal conductivity were increased by decreasing water-to-solid (water-to-cement) ratio and binder coefficient in the low-strength group. Meanwhile, the compressive strength, ultrasonic pulse velocity and thermal conductivity were decreased by decreasing binder coefficient; however, they were increased by decreasing water-to-solid (water-to-cement) ratio in the mid-strength and high-strength group. (3) The Young’s modulus of OPC concrete was higher than AAC concrete at the similar compressive strength by 14.4, 16.6 and 38.2 %, for the low-strength group, mid-strength group and high-strength group, respectively. (4) The peak strength of AAC concrete with water-to-solid ratio (W/S) of 0.3 and 0.4 were increased by 95.9 and 56.5 % as comparing with that of 0.5. (5) The peak strains of AAC concrete were in the range of 0.00219 to 0.00290, where peak strains were lower by 13.7% for low-strength group, lower by 1.1 % for mid-strength group and lower by 3.1 % for high-strength group as comparing with OPC concrete. (6) The post peak behavior of stress-strain relationship of AAC concrete showed more brittle behavior than that of OPC concrete with similar compressive strength. (7) The time of first crack of AAC concrete was later than OPC concrete at the similar compressive strength by 15, 30 and 30 minutes, for the low-strength group, mid-strength group and high-strength group, respectively. (8) The time of snap-back was earlier by increasing compressive strength; moreover, it occurred at 195, 165 and 120 minutes, for the low-strength group, mid-strength group and high-strength group, respectively.

摘要 i Abstract iii 致謝 v 目錄 vii 表目錄 xi 圖目錄 xiii 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 2 第二章 文獻回顧 5 2.1 前言 5 2.2 鹼激發材料發展 5 2.3 工業副產品(鹼激發材料) 6 2.3.1 高爐石粉簡介 6 2.3.2 水淬爐石粉之物理性質 7 2.3.3 水淬爐石粉之化學性質 7 2.4 鹼激發反應機制 8 2.4.1 聚合反應機制 8 2.4.2 無機聚合物之水化產物 10 2.4.3 鈣元素角色 11 2.4.4 鋁元素角色 12 2.5 鹼激發材料因子 12 2.5.1 鹼性激發劑 12 2.5.2 拌合、養護溫度之影響 13 2.6 單軸抗壓之完整應力應變行為 14 2.6.1 完整單軸抗壓試驗 15 2.6.2 完整單軸抗壓之峰後行為探討 17 2.6.3 應變回彈現象 18 2.6.4 混凝土抗壓破壞機理 18 2.6.5 單軸抗壓試驗之影響因子 19 第三章 試驗計畫 35 3.1試驗內容與流程 35 3.2 試驗材料 36 3.2.1 水泥 36 3.2.2 水淬爐石粉 36 3.2.3 F級飛灰 36 3.2.4 粗粒料(六分石) 36 3.2.5 粗粒料(三分石) 37 3.2.6 細粒料(砂) 37 3.2.7 氫氧化鈉溶液(10M) 37 3.2.8 鹼金屬矽酸鹽溶液(水玻璃) 37 3.3 試驗儀器設備 37 3.4 最緊密之粗細粒料堆疊率 40 3.5 配比設計 42 3.6 試驗變數與項目 43 3.6.1 試驗變數 43 3.6.2 試驗項目 44 3.7 拌合流程 45 3.8 試驗方法 47 3.8.1 材料基本性質試驗 47 3.8.2 混凝土新拌性質試驗 51 3.8.3 混凝土硬固性質試驗 52 3.8.4 完整單軸抗壓試驗 54 3.9 MTS伺服液壓加載系統 58 第四章 結果與討論 85 4.1 混凝土新拌性質 85 4.1.1 坍度 85 4.1.2 坍流度 86 4.1.3 單位重 88 4.1.4 凝結時間 89 4.2 混凝土硬固性質 92 4.2.1 抗壓強度 92 4.2.2 超音波波速 95 4.2.3 熱傳導係數 99 4.3 混凝土完整單軸抗壓強度 102 4.3.1 彈性模數 102 4.3.2 卜松比 103 4.3.3 尖峰應變 103 4.3.4 尖峰強度 104 4.3.5 應力應變曲線 104 4.3.6 峰後行為探討 106 第五章 結論與建議 169 5.1結論 169 5.2 建議 172 參考文獻 173

[1]https://e-info.org.tw/node/211962.
[2]曹德光、蘇達根、楊占印、宋國勝,偏高嶺石的微觀結構與鍵合反應能力,礦物學報,24, 366-372, (2004)。
[3]郭振雄、陳香梅、羅光達,台灣工業部門二氧化碳之排放減量,應用經濟論叢,第95卷,(2014)。
[4]United Nations, Kyoto protocol to the united nations framework convention on climate change, (1998).
[5]環境資訊中心,「巴里島路線圖要點」,http://e-info.org.tw/node/29097, (2017).
[6]台灣因應氣候變化綱要公約資訊,「聯合國氣候變化綱要公約」(United Nations Framework Convention on Climate Change, UNFCCC), http://www.tri.org.tw/ unfccc/ Unfccc/ UNFCCC01.htm, (2017)。
[7]Malhotra, V. M. and P. K. Mehta, High-performance, high-volume fly ash concrete: materials, mixture proportioning, properties, construction practice, and case histories, Supplementary Cementing Materials for Sustainable Development Inc., Ottawa, (2005).
[8]Hardjito, B. D. and B. V. Rangan, Development and properties of low calcium fly ash based geopolymer concrete, Research Report GC 1, Faculty of Engineering, Curtins University of Technology, Perth, Australia, (2005).
[9]Taylor, M., C. Tam and D. Gielen, Energy efficiency and CO2 emissions from the global cement industry, International Energy Agency, IEA, Paris, (2006).
[10]吳榮華,學者觀點-水泥產業的循環經濟,(2017)。
[11]陳子謙,複合型無機聚合物砂漿之工程性質,營建工程系碩士論文,國立臺灣科技大學,台北市,(2011)。
[12]陳冠宇,鹼激發爐石基膠體配比因子對其工程性質影響之研究,營建工程系碩士論文,國立臺灣科技大學,台北市,(2010)。
[13]黃俊傑,鹼激發爐灰混凝土新拌性質之研究,營建工程系碩士論文,國立臺灣科技大學,台北市,(2016)。
[14]Davidovits, J., Geopolymer: man-made rock geosynthesis and the resulting development of very early high strength cement, Journal of Materials Education, Vol. 16, No. 2-3, pp. 91-139, (1994).
[15]Geopolymer Institute, http://www.geopolymer.org, (2017).
[16]許偉哲,TFT-LCD廢玻璃鹼激發膠結材之物理性質,土木工程學系碩士班,國立成功大學,台南市,(2009)。
[17]邱友梅,無鹼激發廢玻璃膠結材之研究,土木工程學系碩士論文,國立成功大學,台南市,(2012)。
[18]邱顯楠,含偏高嶺土與稻殼灰鹼激發膠結材及砂漿之防火性能和工程性質探討,營建工程系碩士論文,國立臺灣科技大學,台北市,(2012)。
[19]李祐帆,鹼激發爐石-轉爐石膠結材物理性質之研究,土木工程學系碩士論文,國立成功大學,台南市,(2010)。
[20]楊宗叡,鹼激發爐灰漿體微觀分析與工程性質研究,營建工程系碩士論文,國立臺灣科技大學,台北市,(2014)。
[21]鄭百榕,爐石飛灰復合型無機聚合物於常溫及高溫環境之工程性質,營建工程系碩士論文,國立臺灣科技大學,台北市,(2013)。
[22]吳宗翰,鹼激發爐灰砂漿鋼筋握裹性質研究,營建工程系碩士論文,國立臺灣科技大學,台北市,(2014)。
[23]張士晉,摻CFB副產石灰之鹼激發非灰膠凝材料工程性質之研究,土木工程學系碩士論文,國立成功大學,台南市,(2009)。
[24]蔡宗和,含轉爐石及飛灰之鹼激發爐石膠結材,土木工程學系碩士碩士論文,國立成功大學,台南市,(2011)。
[25]Purdon, A. O., The action of alkalis on blast furnace slag, Journal of the Society of Chemical Industry, vol. 59, no. 9, pp.191-202, (1940).
[26]Davidovits, J., Synthesis of new high temperature geo-polymers for reinforced plastics/composites, Society of Plastic Engineers, Brookfield Center, pp.151-154, (1979).
[27]Wastiels, J., X. Wu, S. Faignet and G. Patfoort, Mineral polymer based on fly ash, In: Proceedings of the 9th International Conference on Solid Waste Management, Widener University, Philadephia, PA, vol. 22, no. 3, (1993).
[28]Palomo, A., M. W. Grutzeck and M. T. Blanco, Alkali-activated fly ashes: A cement for the future, Cement and Concrete Research, vol. 29, no. 8, pp. 1323-1329, (1999).
[29]Li, C., H. Sun and L. Li, A review: The comparison between alkali-activated slag (Si+Ca) and metakaolin (Si+Al) cements, Cement and Concrete Research, vol. 40, pp. 1341-1349, (2010).
[30]中聯資源http://www.chc.com.tw/index.html, (2019).
[31]沈得縣、李承効,轉爐石應用於瀝青混凝土鋪面使用手冊及注意事項。
[32]林育緯,不同鹼激發劑對爐石飛灰無機聚合物工程性質之影響,營建工程系碩士論文,國立臺灣科技大學,台北市,(2012)。
[33]Duxson, P. and J. L. Provis, Designing precursors for geopolymer cements, Journal of the American Ceramic Society, vol. 91, pp. 3864-3869, (2008).
[34]Fernando, P. T., C. G. Joao and S. Jalali, Alkali-activated binders: A review: Part 1. Historical background, terminology. Reaction mechanisms and hydration products, Construction and Building Materials, vol. 22, no. 7, pp. 1305-1314, (2008).
[35]Swamy, R.N. and A. Bouikni, Some engineering properties of slag concrete as influenced by mix proportioning and curing, ACI Materials Journal, (1990).
[36]Wan, H. W., S. Zhonghe. and Z. Lin, Analysis of geometric characteristics of GGBS particles and their influences on cement properties, Cement and concrete Research, vol. 34, no. 1, pp. 133-137, (2004).
[37]Wang, P.Z., R. Trettin and V. Rudert, Effect of fineness and particle size distribution of granulated blast-furnace slag on the hydraulic reactivity in cement systems, Advances in Cement Research, vol. 17, Issue 4, pp. 161-167, (2005).
[38]Shi, C. and L. Yinyu, Investigation on some factors affecting the characteristics of alkali-phosphorus slag cement, Cement and Concrete Research, vol. 19, pp. 527-533, (1989).
[39]Wang, S. D., K. L. Scrivener, and P. L. Pratt, Factors affecting the strength of alkali-activated slag, Cement and Concrete Research, vol. 24, pp. 1033-1043, (1994).
[40]Yip, C. K., G. C. Lukey and J. L. Provis, Effect of calcium silicate sources on geopolymerisation, Cement and Concrete Research, vol. 38, no. 4, pp. 554-564, (2008).
[41]Puertas, F., A. Fernández-Jiménez and M. T. Blanco-VarelaPore, Pore solution in alkali-activated slag cement pastes. Relation to the composition and structure of calcium silicate hydrate, Cement and Concrete Research, vol. 34, no. 1, pp. 139-148, (2004).
[42]Wang, S. D. and K. L. Scrivener, 29Si and 27Al NMR study of alkali-activated slag, Cement and Concrete Research, vol. 33, no. 5 pp. 769-774, (2003).
[43]Wang, S. D., Alkaline activation of slag, PhD Thesis, Imperial College, University of London, (1995).
[44]Mozgawa, W. and J. Deja Spectroscopic, Studies of alkaline activated slag geopolymers, Journal of Molecular Structure, vol. 924-926, pp. 434-441, (2009).
[45]Davidovits, J., Chemistry of geopolymeric systems, Terminology Geopolymer99 Second International Conference Saint-Quentin, France, (1999).
[46]Lecomte, I., M. Liegeois, A. Rulmont, R. Cloots and F. Maseri, Synthesis and characterization of new inorganic polymeric composites based on kaolin or white clay and on ground-granulated blast furnace slag, Journal of Materials Research, vol. 18, no. 11, pp. 2571-2579, (2003).
[47]Barbosa, V. F. F., K. J. D. Mackensie and C. Thaumaturgo, Synthesis and characterisation of materials based on inorganic polymers of alumina and silica: sodium polysialate polymers, International Journal of Inorganic Materials, vol. 2, no. 4, pp. 309-317, (2000).
[48]Yip, C. K., G. C. Lukey and J. S. J. van Deventer, The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation, Cement and Concrete Research, vol. 35, no. 9, pp. 1688-1697, (2005).
[49]Granizo, M. L., S. Alonso, M. T. Blanco-Varela and A. Palomo, Alkaline activation of metakaolin: effect of calcium hydroxide in the products of reaction, Journal of the American Ceramic Society, vol. 85, no. 1, pp. 225-231, (2002).
[50]Song, S. and H. M. Jennings, Pore solution chemistry of alkali-activated ground granulated blast-furnace slag, Cement Concrete Research, vol. 29 no. 2, pp. 159-170, (1999).
[51]Song, S., D. Sohn, H. M. Jennings and T. O. Mason, Hydration of alkali-activated ground granulated blast furnace slag, Journal of Materials Science, vol. 35 no. 1, pp. 249-257, (2000).
[52]Hamilton, J. P., S. L. Brantley, C. G. Pantano, L. J. Criscenti and J. D. Kubicki, Dissolution of nepheline, jadeite and albite glasses: toward better models for aluminosilicate dissolution, Geochimica et Cosmochimica Acta, vol. 65, no. 21, pp. 3683-3702, (2001).
[53]Shi, C. and R. L. Day, A calorimetric study of early hydration of alkali-slag cement, Cement and Concrete Research, vol. 25, no. 6, pp. 1333-1346, (1995).
[54]Shi, C. and R. L. Day, Some factors affecting early hydration of alkali-slag cement, Cement and Concrete Research, vol. 26, no. 3, pp. 439-447, (1996).
[55]Glukivski and V. D., Alkali-earth binder and concrete produced with them, USSR, Russian, Visheka shkola, Kiev, (1979).
[56]Xu, H. and J. S. J. Van Deventer, The Gpolymerization of alumino-silicate minerals, International Journal Minerals Process, vol. 59, no. 3, pp. 247-266, (2000).
[57]Chi, M, Effects of modulus ration and dosage of alkali-activated solution on the properties and micro-structural characteristics of alkali-activated fly ash mortars, Construction and Building Materials, (2015).
[58]A, Fernandez-Jimenez and F. Puertas, Influence of the activator concentration on the kinetics of the alkaline activation process of a blast furnace slag, Materiales de Construction, vol. 47 (246), (1997).
[59]Wang, K., P.N. Lemougna., Q. Tang, W. Li, Y. He and X. Cui, Low temperature depolymerization and polycondensation of a slag-based inorganic polymer, Ceramics International, (2017).
[60]Cho, Y. K., S. W. Yoo., S. H. Jung., K. M. Lee. and S. J. Kwon, Effect of Na2O content, SiO2/Na2O molar ratio, and curing conditions on the compressive strength of FA-based geopolymer, Construction and Building Materials, Page 253-260, (2017).
[61]Brown, E.T., Rock Characterization Testing and Monitoring, ISRM Suggested Methods, Pergamon Press, Oxford, pp. 107-127, (1981).
[62]Rechart, F.E., A. Brandtzaeg and R.L. Brown, A study of the failure of concrete under combined compressive stresses, Bulletin 128, University of Illinois Engineering Experiment Station, (1928).
[63]Hallbauer, D. K., H. Wagner and N. G. W. Cook, Some observations concerning the microscopic and mechanical behavior of quartzite specimens in stiff, triaxial compression tests, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., vol. 10, pp. 713-726, (1973).
[64]黃兆龍,混凝土性質與行為,詹氏書局,台北(2010)。
[65]Shah, S. P. and R. Sankar, Internal Cracking and Strain-Softening Response of Concrete under Uniaxial Compression, ACI Materials Journal, vol. 84, pp. 200-212, (1987).
[66]Andreev, G.E., Brittle Failure of Rock Materials, Test Results and Constitutive Models, Balkema, Rotterdam, (1995).
[67]Jansen, D. C. and S. P. Shah, Effect of Length of Compressive Strain Softening of Concrete, Journal of Engineering Mechanics, ASCE, vol. 123, pp. 25-35, (1997).
[68]Blanton, T. L., Effect of Strain Rates from 10-2 to sec-1 in Triaxial Compression Tests om Three Rocks, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., vol. 18, pp. 47-62, (1981).
[69]ASTM C150/C150M-17, Standard Specification for Portland Cement, ASTM Committee C01, (2017).
[70]ASTM C168-17, Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, ASTM Committee C09, (2017).
[71]Rafeet A., R. Vinai, M. Soutsos and W. Sha, Guidelines for mix proportioning of fly ash/GGBS based alkali activated concretes, Construction and Building Materials, vol. 147, pp. 130-142, (2017).
[72]Shi C., P. V. Krivenko and D. Roy, Alkali Activated Cements and Concretes, (2006).
[73]CNS 14220, Method of test for setting time of concrete mixtures by penetration resistance, CNS committee, (1998).
[74]RILEM TC 148-SSC: Strain Softening of Concrete – Test Methods for Compressive Softening, Test Method for Measurement of the Strain-Softening Behavior of Concrete under Uniaxial Compression, Materials and Structure, vol. 33, pp. 347-351, (2001).
[75]ASTM C188-17, Standard Test Method for Density of Hydraulic Cement, ASTM Committee C01, (2017).
[76]CNS 487, Method of test for density, relative density (specific gravity), and absorption of fine aggregate, CNS committee, (1993).
[77]Kotovos, M. D., Effect of testing techniques on the post-ultimate behavior of concrete in compression, Material Structure, vol. 16, pp. 3-12, (1983).
[78]Blanton, T. L., Effect of Strain Rates from 10-2 to sec-1 in Triaxial Compression Tests on Three Rocks, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., vol. 18, pp. 47-62, (1981).
[79]ASTM C496-14, Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of Concretein Compression, ASTM Committee C09, (2014).
[80]Boumiz, A., C. Vernet, and F. C. Tenoudjit, Mechanical Properties of Cement Pastes and Mortars at Early Ages, Advanced Cement Based Materials, vol. 3, pp. 94-106, (1996).
[81]Wang, S. D., K. L. Scrivener and P. L. Pratt, Factors affecting the strength of alkali-activated slag, Cement and Concrete Research, vol. 24, no. 6, pp. 1033-1043, (1994).
[82]Goodman, R. E., Introduction to Rock Mechanics, John Wiley & Sons Inc, (1989).
[83]Martin C. D. and N. A. Chandler, The progressive Fracture of Lau du Bonnet Granite, Int. J. Rock Mech. Min Sci & Geomech. Abstr., vol. 31, pp. 643-695.
[84]翁子軒,氫氧化鈉和矽酸鈉溶液對爐石基無機聚合物工程性質之影響,營建工程系碩士論文,國立臺灣科技大學,台北市,(2018)。
[85]楊巧薇,無水泥生態膠結材砂漿斷裂能量與單軸抗壓行為之研究,營建工程系碩士論文,國立臺灣科技大學,台北市,(2018)。
ACI 211.1-91, Standard Practice dor Selecting Proportions for Normal, Heavyweight, and Mass Concrete, ACI Committee 211, (2002).

無法下載圖示 全文公開日期 2025/01/07 (校內網路)
全文公開日期 2025/01/07 (校外網路)
全文公開日期 2025/01/07 (國家圖書館:臺灣博碩士論文系統)
QR CODE