簡易檢索 / 詳目顯示

研究生: 楊宗叡
Tzong-Ruey Yang
論文名稱: 鹼激發爐灰漿體材料微觀分析與工程性質研究
Study on Microstructures and Engineering Properties of Alkali-Activated Paste with Slag and Fly Ash
指導教授: 張大鵬
Ta-Peng Chang
口試委員: 黃然
Ran Huang
劉玉雯
Yu-Wen Liu
楊仲家
Chung-Chia Yang
詹穎雯
Yin-Wen Chan
黃兆龍
Chao-Lung Hwang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 142
中文關鍵詞: 鹼激發漿體材料乾縮高溫爐石飛灰
外文關鍵詞: alkali-activated material, drying shrinkage, elevated temperatures, slag, fly ash
相關次數: 點閱:280下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以氫氧化鈉溶液及矽酸鈉溶液(水玻璃)等鹼性溶液,於固定液固比下,激發爐灰粉體製作鹼激發爐灰漿體材料,探討不同鹼激發量、水玻璃模數及爐石粉飛灰混合比等參數變化,對鹼激發爐灰漿體材料新拌及硬固性質之影響,並探討於不同高溫度環境下持溫1.5小時後之爐灰漿體材料性質變化,同時亦以微觀試驗觀察鹼激發爐灰漿體材料組成成分及微觀結構之變化。
    研究結果顯示:(1)新拌性質方面,鹼激發爐灰漿體材料新拌流度值在145 mm至248 mm之間;初凝與終凝時間分別為4~46分鐘與15~54分鐘之間,增加鹼激發量會降低流度性能與縮短凝結時間。(2)鹼激發爐灰漿體材料試驗組之28天齡期抗壓強度在28.4~82.05 MPa之間,增加溶液鹼濃度可提升材料強度,但因飛灰惰性材料特性使得飛灰組別之強度皆低於全爐石組,50%飛灰混合降低28天抗壓強度34.1~38%之間。(3)全試驗組之鹼激發爐灰熱傳導係數範圍在0.701~0.793 w/m•k之間,低於一般傳統混凝土之約20~53%,顯示材料具良好隔熱性能,且粉體混合比例對係數之影響性大於溶液配比因子。(4)乾縮性能試驗結果顯示,鹼溶液參數中水玻璃模數與鹼激發量增加皆會提升漿體材料乾縮量,28天較3天齡期增加1.25~2.41倍,飛灰粉體比例增加可降低乾縮量。(5)在高溫作用下,全爐石組之高溫後強度皆低於同齡期常溫強度,但爐灰混合組別之強度較高,試驗組中承受100 oC後最高抗壓強度之最佳爐灰比例為9:1,而在承受200、400及600 oC下之最佳強度之爐灰比例為7:3,顯示鹼激發爐灰漿體材料具有較佳承受高溫環境特性。(6)由顯微鏡照片顯示,在常溫環境中混合飛灰之鹼激發漿體材料有眾多未溶解飛灰球顆粒存在,因此降低漿體材料力學性質,但因顆粒填充效果與中空球特性可增加材料體積穩定性及隔熱性能。


    In this study, the sodium hydroxide and sodium silicate were used as the alkali activator to activate the blended powder of slag and fly ash. Under the condition of fixed liquid-solid ratio, experimental parameters including different dosages of activator, moduli of sodium silicate and proportions of slag-fly ash mixtures were used to investigate the effects of various combinations of parameters on the fresh and hardened properties of alkali activated paste. The second is to investigate the effects of exposure to various elevated temperatures for 1.5 hour on the properties of alkali-activated paste. Finally, the variations of chemical compositions and microstructures of alkali-activated paste were examined by the microstructural analyses.
    The research results show that: (1) For the fresh properties, the flowabilities of alkali-activated slag-fiy ash paste were in the range from 145 to 248 mm, the initial and finial setting times of paste were from 4 to 46 and 15 to 54 min, respectively. Increase of dosages of activator could decrease the flowability and setting times. (2) The increase of dosages of activator could enhance the material strength, and the compressive strngths of all mixture at 28 days were in the range from 28.4 to 82.05 MPa. However, when the slag powder mixed with fly ash had lower strength with the amount of fly ash replacement by 50%, the compressive strength at 28 days were decreased by 34.1 to 38%. (3) The thermal conductivity of all mixture were in range from 0.701 to 0.793 w/m•k, and the results were lower than that of normal concrete by 20 to 53%, which showed that alkali-activated slag-fiy ash paste has excellent insulation properties. In addition, the properties of thermal conductivity were controlled by composition of powder material. (4) The results of drying shrinkage test indicated that the increase of activator dosages could increase the drying shrinkage and the increase of drying shrinkage by 1.25 to 2.41 times from ages of 3 to 28 days, but specimens added with fly ash significantly decreased the drying shrinkage. (5) The compressive strength of slag-based alkali-activated material after exposoure to elevated temperature were lower than these of ambient temperature, but the compressive strengths of slag-fly ash alkali-activated material were higher. The optimum powder ratio of slag to fly ash with the highest compressive strrnghts afte exposure to 100 oC was 9:1, while those for exposure to 200 oC, 400 oC and 600 oC was 7:3. It shows that the slag-fly ash alkali-activated material has good properties to resist the elevated temperatures. (6) The results of SEM photos indicated that, in ambient condition, the alkali-activated slag-fly ash paste had many undissolved particles of fly ash, which reduced its mechanical properties. However, the filling effect of fly ash particle and its characteristic of hollow spheres help increase the volume stability and thermal insulation properties of material.

    中文摘要 .............................................I 英文摘要 ............................................II 致謝...............................................III 總目錄...............................................V 表目錄..............................................IX 圖目錄...............................................X 第一章 緒論..........................................1 1.1 研究動機.........................................1 1.2 研究目的.........................................3 1.3 研究內容與流程...................................3 第二章 文獻回顧......................................6 2.1 前言 .............................................6 2.2 鹼激發材料發展...................................6 2.3 鹼激發材料基礎材料...............................7 2.3.1 爐石粉.........................................7 2.3.2 飛灰...........................................9 2.4 鹼激發爐石反應機制..............................11 2.4.1. 水化反應影響因子.............................11 2.4.2 水化反應機制與水化反應物......................12 2.4.3 鈣與鋁元素之影響..............................13 2.5 鹼激發材料配比因子..............................14 2.5.1鹼激發劑溶液...................................14 2.4.2 鹼激發溶液濃度................................15 2.4.2 混和鹼激發劑影響..............................16 2-5爐石-飛灰基複合型鹼激發材料......................17 2.6鹼激發材料高溫性質...............................19 第三章 試驗計畫.....................................29 3.1 試驗內容與流程..................................29 3.2 試驗材料........................................29 3.3 試驗變數與項目..................................30 3.3.1 試驗內容範圍..................................30 3.3.2 試驗變數與項目................................31 3.4 試驗拌和說明....................................32 3.5 試驗方法........................................32 3.5.1 新拌性質試驗..................................32 3.5.2 硬固性質試驗..................................34 3.5.3 高溫暴露試驗..................................36 3.5.4 微觀分析試驗..................................36 3.6 試驗儀器與設備..................................38 3.6.1 新拌試驗儀器..................................38 3.6.2 硬固試驗儀器..................................39 3.6.3 高溫加熱與微觀分析試驗儀器....................40 第四章 鹼激發爐灰漿體材料工程性質試驗結果分析.......58 4.1 漿體材料新拌性質................................58 4.1.1 新拌流度值 ....................................58 4.1.2 初、終凝結時間................................59 4.1.3 水化放熱溫度..................................60 4.2 鹼激發漿體材料硬固性質..........................61 4.2.1 抗壓強度......................................61 4.2.2 超音波速......................................62 4.2.3 動態彈性模數..................................63 4.2.4 熱傳導係數....................................65 4.2.5 體積穩定性 ....................................66 4.3 高溫暴露試驗....................................67 4.3.1 殘餘強度......................................67 4.3.2 單位重........................................68 第五章 鹼激發爐灰漿體材料微觀試驗結果分析..........107 5.1 粉末X光繞射分析................................107 5.1.1 試驗原料分析.................................107 5.1.2 常溫環境鹼激發漿體 ...........................107 5.1.3 高溫環境後鹼激發漿體.........................108 5.2 電子掃描顯微鏡.................................109 5.2.1 常溫環境顯微鏡照片...........................109 5.2.2 高溫環境顯微鏡照片...........................110 5.3 壓汞孔隙試驗...................................112 5.4 漿體熱重量分析試驗.............................112 5.4 傅立葉紅外線試驗...............................113 第六章 結論與建議..................................131 6.1 結論...........................................131 6.2 建議 ...........................................134 參考文獻...........................................135

    [1] V. M. M. P. K. Malhotra, High-performance, high-volume fly ash concrete : materials, mixture proportioning, properties, construction practice, and case histories, Ottawa: Supplementary Cementing Materials for Sustainable Development Inc., 2005.
    [2] B. V. H. Rangan, D., Development and properties of low calcium fly ash based geopolymer concrete, Research report GC-1, Faculty of Engineering, Curtins University of Technology, Perth, Australia, 2005.
    [3] M. T. Taylor, C. ;Gielen, D., “Energy efficiency and CO2 emissions from the global cement industry,” in Energy Efficiency and CO2 Emission Reduction Potentials and Policies in the Cement Industry, Paris, 2006.
    [4] N. Stern, Stern Review on the Economics of Climate Change, 2006.
    [5] R. K. R. Pachauri, A. (Eds.), Assessment of observed changes and responses in natural and managed systems, Climate change 2007: impacts, adaption and vulnerability, Climate Change 2007: Synthesis Report, IPCC, Geneva, Switzerland, 2007.
    [6] A. M. Rashad, and S. R. Zeedan, “The effect of activator concentration on the residual strength of alkali-activated fly ash pastes subjected to thermal load,” Construction and Building Materials, vol. 25, no. 7, pp. 3098-3107, 7//, 2011.
    [7] H. F. W. Taylor, Cement chemistry, London: Thomas Telford, 1997.
    [8] A. M. Rashad, Y. Bai, P. A. M. Basheer, N. B. Milestone, and N. C. Collier, “Hydration and properties of sodium sulfate activated slag,” Cement and Concrete Composites, vol. 37, no. 0, pp. 20-29, 3//, 2013.
    [9] A. Palomo, Fernández-Jiménez, A., López-Hombrados, C., Lleyda, J.L., “Railway sleepers made of alkali activated fly ash concrete,” Revista Ingeniería de Construcción, vol. 22, no. 2, pp. 75-80, 2007.
    [10] 曹德光、蘇達根、楊占印、宋國勝,「偏高嶺石的微觀結構與鍵合反應能力」,礦物學報,第24卷,第4期,第366-372頁,2004。
    [11] 許偉哲,「TFT-LCD廢玻璃鹼激發膠結材之物理性質」,土木工程學系,國立成功大學,台南市,2009。
    [12] 張士晉,「掺CFB副產石灰之鹼激發飛灰膠凝材料工程性質之研究」,土木工程學系,國立成功大學,台南市,2009。
    [13] 李祐帆,「鹼激發爐石-轉爐石膠結材物理性質之研究」,土木工程學系,國立成功大學,台南市,2010。
    [14] 劉畊甫,「焚化底碴鹼激發效益之評估」,土木工程學系,臺灣大學,台北市,2010。
    [15] 賴琇瑩,「鹼激發廢玻璃膠結材之常溫配比研究」,土木工程學系,國立成功大學,台南市,2010。
    [16] 官志恆,「鹼活化液模數比及劑量對爐石混凝土性質影響之研究」,河海工程學系,國立臺灣海洋大學,基隆市,2011。
    [17] 蔡宗和,「含轉爐石及飛灰之鹼激發爐石膠結材」,土木工程學系,國立成功大學,台南市,2011。
    [18] 邱友梅,「無鹼激發廢玻璃膠結材之研究」,土木工程學系,國立成功大學,台南市,2012。
    [19] 邱顯楠,「含偏高嶺土與稻殼灰鹼激發膠結材及砂漿之防火性能和工程性質探討」,營建工程系,國立臺灣科技大學,台北市,2012。
    [20] 許皓翔,「TFT-LCD廢玻璃以鹼激發方式製成防火材料之研究」,環境工程學系,國立宜蘭大學,宜蘭縣,2012。
    [21] 謝明蒲,「廢玻璃鹼激發膠結材之吸水性能研究」,土木工程學系,國立成功大學,台南市,2012。
    [22] A. O. Purdon, “The action of alkalis on blast furnace slag,” Journal of the Society of Chemical Industry, vol. 59, no. 9, pp. 191-202, 1940.
    [23] V. D. Glukhovsky, Soil silicates, Kiev: USSR: Gostroiizdat, 1959.
    [24] R. Malinowsky, “Concretes and mortars in ancient aqueducts,” Concrete International, vol. 1, pp. 66-76, 1979.
    [25] H. D. Contenson, and C. L. C, “A propos des vases en chaux : recherches sur leur fabrication et leur origine,” Paléorient, pp. 177-182, 1979.
    [26] G. Perinet, Etude minéralogique de vaisselles blanches néolithiques de Ras-Shamra et Tell Ramad (Syrie), Paris: Académie des Sciences, 1980.
    [27] J. Davidovits, Courtois, L. D. T. A., "detection of intra-ceramic geopolymeric setting in archaeological ceramics and mortars."
    [28] C. A. Langton, and D. M. Roy, "Longevity of borehole and shaft sealing materials: characterization of ancient cement-based building materials." pp. 543-549.
    [29] D. M. Roy, Langton, C.A., Studies of ancient concretes as analogs of cementituos sealing materials for repository in Tuff, LA-11527-MS, Los Alamos Nacional Laboratory, 1989.
    [30] M. L. Granizo, “Activation alcalina de metacaolin: desarrolllo de nuevos materials cementantes.,” University Autonoma of Madrid, Spanish, 1998.
    [31] V. D. Glukhovsky, Rostovskaja, G.S., Rumyna, G.V., "High strength slag alkaline cements." pp. 164-168.
    [32] J. Davidovits, “Synthesis of new high temperature geo-polymers for reinforced plastics/composites,” in SPE PACTEC 79 Society of Plastic Engineers,, Brookfield Center, 1979, pp. 151-154.
    [33] D. M. Roy, “Alkali-activated cements Opportunities and challenges,” Cement and Concrete Research, vol. 29, no. 2, pp. 249-254, 2//, 1999.
    [34] A. Palomo, M. W. Grutzeck, and M. T. Blanco, “Alkali-activated fly ashes: A cement for the future,” Cement and Concrete Research, vol. 29, no. 8, pp. 1323-1329, 8//, 1999.
    [35] C. Li, H. Sun, and L. Li, “A review: The comparison between alkali-activated slag (Si+Ca) and metakaolin (Si+Al) cements,” Cement and Concrete Research, vol. 40, no. 9, pp. 1341-1349, 9//, 2010.
    [36] 黃兆龍,「混凝土性質與行為」,詹氏書局,台北市,2002。
    [37] 黃兆龍,「卜作嵐混凝土使用手冊」,財團法人中興工程顧問社,台北市,2007。
    [38] 黃兆龍,「高爐熟料在水泥上之利用」,第162-177頁。
    [39] 公共工程委員會,「公共工程飛灰混凝土使用手冊」,台北市,1999。
    [40] F. Pacheco-Torgal, J. Castro-Gomes, and S. Jalali, “Alkali-activated binders: A review: Part 1. Historical background, terminology, reaction mechanisms and hydration products,” Construction and Building Materials, vol. 22, no. 7, pp. 1305-1314, 7//, 2008.
    [41] N. Y. Mostafa, S. A. S. El-Hemaly, E. I. Al-Wakeel, S. A. El-Korashy, and P. W. Brown, “Characterization and evaluation of the hydraulic activity of water-cooled slag and air-cooled slag,” Cement and Concrete Research, vol. 31, no. 6, pp. 899-904, 5//, 2001.
    [42] D. Li, Z. Xu, Z. Luo, Z. Pan, and L. Cheng, “The activation and hydration of glassy cementitious materials,” Cement and Concrete Research, vol. 32, no. 7, pp. 1145-1152, 7//, 2002.
    [43] R. N. Swamy, and A. Bouikni, “Some engineering properties of slag concrete as influenced by mix proportioning and curing,” ACI Materials Journal, vol. 87, no. 3, pp. 210-220, 1990.
    [44] P. Duxson, and J. L. Provis, “Designing precursors for geopolymer cements,” Journal of the American Ceramic Society, vol. 91, no. 12, pp. 3864-3869, 2008.
    [45] S. Caijun, and L. Yinyu, “Investigation on some factors affecting the characteristics of alkali-phosphorus slag cement,” Cement and Concrete Research, vol. 19, no. 4, pp. 527-533, 7//, 1989.
    [46] S.-D. Wang, K. L. Scrivener, and P. L. Pratt, “Factors affecting the strength of alkali-activated slag,” Cement and Concrete Research, vol. 24, no. 6, pp. 1033-1043, //, 1994.
    [47] H. Wan, Z. Shui, and Z. Lin, “Analysis of geometric characteristics of GGBS particles and their influences on cement properties,” Cement and Concrete Research, vol. 34, no. 1, pp. 133-137, 1//, 2004.
    [48] P. Z. Wang, R. Trettin, and V. Rudert, “Effect of fineness and particle size distribution of granulated blast-furnace slag on the hydraulic reactivity in cement systems,” Advances in Cement Research, vol. 17, no. 4, pp. 161-166, 2005.
    [49] J. Faimon, “Oscillatory silicon and aluminum aqueous concentrations during experimental aluminosilicate weathering,” Geochimica et Cosmochimica Acta, vol. 60, no. 15, pp. 2901-2907, 8//, 1996.
    [50] S.-D. Wang, and K. L. Scrivener, “Hydration products of alkali activated slag cement,” Cement and Concrete Research, vol. 25, no. 3, pp. 561-571, 4//, 1995.
    [51] W. Mozgawa, and J. Deja, “Spectroscopic studies of alkaline activated slag geopolymers,” Journal of Molecular Structure, vol. 924–926, no. 0, pp. 434-441, 4/30/, 2009.
    [52] F. Puertas, A. Fernández-Jiménez, and M. T. Blanco-Varela, “Pore solution in alkali-activated slag cement pastes. Relation to the composition and structure of calcium silicate hydrate,” Cement and Concrete Research, vol. 34, no. 1, pp. 139-148, 1//, 2004.
    [53] S.-D. Wang, “Alkaline activation of slag,” PhD Thesis, Imperial College, University of London, 1995.
    [54] S.-D. Wang, and K. L. Scrivener, “29Si and 27Al NMR study of alkali-activated slag,” Cement and Concrete Research, vol. 33, no. 5, pp. 769-774, 5//, 2003.
    [55] C. K. Yip, G. C. Lukey, and J. S. J. van Deventer, “The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation,” Cement and Concrete Research, vol. 35, no. 9, pp. 1688-1697, 9//, 2005.
    [56] H. Xu, and J. S. J. Van Deventer, “The geopolymerisation of alumino-silicate minerals,” International Journal of Mineral Processing, vol. 59, no. 3, pp. 247-266, 6//, 2000.
    [57] C. K. Yip, G. C. Lukey, J. L. Provis, and J. S. J. van Deventer, “Effect of calcium silicate sources on geopolymerisation,” Cement and Concrete Research, vol. 38, no. 4, pp. 554-564, 4//, 2008.
    [58] M. L. Granizo, S. Alonso, M. T. Blanco-Varela, and A. Palomo, “Alkaline activation of metakaolin: Effect of calcium hydroxide in the products of reaction,” Journal of the American Ceramic Society, vol. 85, no. 1, pp. 225-231, 2002.
    [59] P. Duxson, A. Fernández-Jiménez, J. L. Provis, G. C. Lukey, A. Palomo, and J. S. J. Van Deventer, “Geopolymer technology: The current state of the art,” Journal of Materials Science, vol. 42, no. 9, pp. 2917-2933, 2007.
    [60] A. Fernández-Jiménez, A. Palomo, I. Sobrados, and J. Sanz, “The role played by the reactive alumina content in the alkaline activation of fly ashes,” Microporous and Mesoporous Materials, vol. 91, no. 1–3, pp. 111-119, 4/15/, 2006.
    [61] J. P. Hamilton, S. L. Brantley, C. G. Pantano, L. J. Criscenti, and J. D. Kubicki, “Dissolution of nepheline, jadeite and albite glasses: toward better models for aluminosilicate dissolution,” Geochimica et Cosmochimica Acta, vol. 65, no. 21, pp. 3683-3702, 11/1/, 2001.
    [62] A. Buchwald, H. Hilbig, and C. Kaps, “Alkali-activated metakaolin-slag blends - Performance and structure in dependence of their composition,” Journal of Materials Science, vol. 42, no. 9, pp. 3024-3032, 2007.
    [63] C. Shi, and R. L. Day, “A calorimetric study of early hydration of alkali-slag cements,” Cement and Concrete Research, vol. 25, no. 6, pp. 1333-1346, 8//, 1995.
    [64] C. Shi, and R. L. Day, “Some factors affecting early hydration of alkali-slag cements,” Cement and Concrete Research, vol. 26, no. 3, pp. 439-447, 3//, 1996.
    [65] V. D. Glukhovsky, Alkali-earth binder and concrete produced with them, Kiev: Russian: Visheka shkola, 1979.
    [66] J. W. Phair, and J. S. J. Van Deventer, “Effect of the silicate activator pH on the microstructural characteristics of waste-based geopolymers,” International Journal of Mineral Processing, vol. 66, no. 1–4, pp. 121-143, 9//, 2002.
    [67] 朱純熙,盧晨,「水玻璃硬化的認識過程」,無機鹽工業,第33卷,第1期,2001。
    [68] A. R. Brough, M. Holloway, J. Sykes, and A. Atkinson, “Sodium silicate-based alkali-activated slag mortars: Part II. The retarding effect of additions of sodium chloride or malic acid,” Cement and Concrete Research, vol. 30, no. 9, pp. 1375-1379, 9//, 2000.
    [69] K. Komnitsas, D. Zaharaki, and V. Perdikatsis, “Effect of synthesis parameters on the compressive strength of low-calcium ferronickel slag inorganic polymers,” Journal of Hazardous Materials, vol. 161, no. 2–3, pp. 760-768, 1/30/, 2009.
    [70] 陳冠宇,「鹼激發爐石基膠體配比因子對其工程性質影響之研究」,營建工程系,國立臺灣科技大學,台北市,2010。
    [71] 楊仁佑,「低溫養護對爐石基無機聚合物工程性質之影響」,營建工程系,國立臺灣科技大學,台北市,2011。
    [72] 陳子謙,「複合型無機聚合物砂漿之工程性質」,營建工程系,國立臺灣科技大學,台北市,2012。
    [73] 林育緯,「不同鹼激發劑對爐石飛灰無機聚合物工程性質之影響」,營建工程系,國立臺灣科技大學,台北市,2012。
    [74] H. Xu, J. S. J. van Deventer, and G. C. Lukey, “Effect of Alkali Metals on the Preferential Geopolymerization of Stilbite/Kaolinite Mixtures,” Industrial & Engineering Chemistry Research, vol. 40, no. 17, pp. 3749-3756, 2001/08/01, 2001.
    [75] P. D. Silva, K. Sagoe-Crenstil, and V. Sirivivatnanon, “Kinetics of geopolymerization: Role of Al2O3 and SiO2,” Cement and Concrete Research, vol. 37, no. 4, pp. 512-518, 4//, 2007.
    [76] 付興華,陶文宏,孫鳳金,「水玻璃對地聚物膠凝材料性能影響的研究」,水泥工程,第2期,2008。
    [77] F. Puertas, S. Martı́nez-Ramı́rez, S. Alonso, and T. Vázquez, “Alkali-activated fly ash/slag cements: Strength behaviour and hydration products,” Cement and Concrete Research, vol. 30, no. 10, pp. 1625-1632, 10//, 2000.
    [78] Z. Li, and S. Liu, “Influence of Slag as Additive on Compressive Strength of Fly Ash-Based Geopolymer,” Journal of Materials in Civil Engineering, vol. 19, no. 6, pp. 470-474, 2007/06/01, 2007.
    [79] 廖佳慶,「鹼礦渣水泥與混凝土化學收縮和乾縮行為研究」,材料科學與工程系,重慶大學,重慶,2007。
    [80] S. Kumar, R. Kumar, and S. P. Mehrotra, “Influence of granulated blast furnace slag on the reaction, structure and properties of fly ash based geopolymer,” Journal of Materials Science, vol. 45, no. 3, pp. 607-615, 2010/02/01, 2010.
    [81] J. E. Oh, P. J. M. Monteiro, S. S. Jun, S. Choi, and S. M. Clark, “The evolution of strength and crystalline phases for alkali-activated ground blast furnace slag and fly ash-based geopolymers,” Cement and Concrete Research, vol. 40, no. 2, pp. 189-196, 2//, 2010.
    [82] S. K. Nath, and S. Kumar, “Influence of iron making slags on strength and microstructure of fly ash geopolymer,” Construction and Building Materials, vol. 38, no. 0, pp. 924-930, 1//, 2013.
    [83] M. Chi, and R. Huang, “Binding mechanism and properties of alkali-activated fly ash/slag mortars,” Construction and Building Materials, vol. 40, no. 0, pp. 291-298, 3//, 2013.
    [84] N. K. Lee, and H. K. Lee, “Setting and mechanical properties of alkali-activated fly ash/slag concrete manufactured at room temperature,” Construction and Building Materials, vol. 47, no. 0, pp. 1201-1209, 10//, 2013.
    [85] S. A. Bernal, J. L. Provis, B. Walkley, R. San Nicolas, J. D. Gehman, D. G. Brice, A. R. Kilcullen, P. Duxson, and J. S. J. van Deventer, “Gel nanostructure in alkali-activated binders based on slag and fly ash, and effects of accelerated carbonation,” Cement and Concrete Research, vol. 53, no. 0, pp. 127-144, 11//, 2013.
    [86] T. W. Cheng, and J. P. Chiu, “Fire-resistant geopolymer produced by granulated blast furnace slag,” Minerals Engineering, vol. 16, no. 3, pp. 205-210, 3//, 2003.
    [87] D. L. Y. Kong, J. G. Sanjayan, and K. Sagoe-Crentsil, “Comparative performance of geopolymers made with metakaolin and fly ash after exposure to elevated temperatures,” Cement and Concrete Research, vol. 37, no. 12, pp. 1583-1589, 12//, 2007.
    [88] D. L. Y. Kong, and J. G. Sanjayan, “Damage behavior of geopolymer composites exposed to elevated temperatures,” Cement and Concrete Composites, vol. 30, no. 10, pp. 986-991, 11//, 2008.
    [89] D. L. Y. Kong, and J. G. Sanjayan, “Effect of elevated temperatures on geopolymer paste, mortar and concrete,” Cement and Concrete Research, vol. 40, no. 2, pp. 334-339, 2//, 2010.
    [90] J. Davidovits, "Fireproof geopolymer cements." pp. 165-169.
    [91] J. Davidovits, Geopolymer Chemistry and Applications: Geopolymer Institute, 2008.
    [92] A. Natali Murri, W. D. A. Rickard, M. C. Bignozzi, and A. van Riessen, “High temperature behaviour of ambient cured alkali-activated materials based on ladle slag,” Cement and Concrete Research, vol. 43, no. 0, pp. 51-61, 1//, 2013.
    [93] S. Aydın, and B. Baradan, “Effect of activator type and content on properties of alkali-activated slag mortars,” Composites Part B: Engineering, vol. 57, no. 0, pp. 166-172, 2//, 2014.
    [94] S. Mindess, J. F. Young, and D. Darwin, Concrete (2nd Edition): Prentice Hall, 2003.
    [95] 李宜桃,「鹼活化還原碴漿體收縮及抑制方法之研究」,土木工程學系,國立中央大學,桃園縣,2003。
    [96] C. Duran Atiş, C. Bilim, Ö. Çelik, and O. Karahan, “Influence of activator on the strength and drying shrinkage of alkali-activated slag mortar,” Construction and Building Materials, vol. 23, no. 1, pp. 548-555, 1//, 2009.
    [97] F. Collins, and J. G. Sanjayan, “Effect of pore size distribution on drying shrinking of alkali-activated slag concrete,” Cement and Concrete Research, vol. 30, no. 9, pp. 1401-1406, 9//, 2000.
    [98] T. Bakharev, J. G. Sanjayan, and Y.-B. Cheng, “Alkali activation of Australian slag cements,” Cement and Concrete Research, vol. 29, no. 1, pp. 113-120, 1//, 1999.
    [99] A. R. Brough, and A. Atkinson, “Sodium silicate-based, alkali-activated slag mortars: Part I. Strength, hydration and microstructure,” Cement and Concrete Research, vol. 32, no. 6, pp. 865-879, 6//, 2002.
    [100] F. Puertas, and A. Fernández-Jiménez, “Mineralogical and microstructural characterisation of alkali-activated fly ash/slag pastes,” Cement and Concrete Composites, vol. 25, no. 3, pp. 287-292, 4//, 2003.
    [101] M. B. Haha, B. Lothenbach, G. Le Saout, and F. Winnefeld, “Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag - Part I: Effect of MgO,” Cement and Concrete Research, vol. 41, no. 9, pp. 955-963, 9//, 2011.
    [102] T. Yang, X. Yao, Z. Zhang, and H. Wang, “Mechanical property and structure of alkali-activated fly ash and slag blends,” Journal of Sustainable Cement-Based Materials, vol. 1, no. 4, pp. 167-178, 2012.
    [103] L. Alarcon-Ruiz, G. Platret, E. Massieu, and A. Ehrlacher, “The use of thermal analysis in assessing the effect of temperature on a cement paste,” Cement and Concrete Research, vol. 35, no. 3, pp. 609-613, 3//, 2005.
    [104] I. Ismail, S. A. Bernal, J. L. Provis, R. San Nicolas, S. Hamdan, and J. S. J. van Deventer, “Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash,” Cement and Concrete Composites, vol. 45, no. 0, pp. 125-135, 1//, 2014.
    [105] T. López, P. Bosch, M. Asomoza, R. Gómez, and E. Ramos, “DTA-TGA and FTIR spectroscopies of sol-gel hydrotalcites: aluminum source effect on physicochemical properties,” Materials Letters, vol. 31, no. 3-6, pp. 311-316, 6//, 1997.

    無法下載圖示 全文公開日期 2019/07/28 (校內網路)
    全文公開日期 2044/07/28 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE