簡易檢索 / 詳目顯示

研究生: 吳育華
Yu-hua Wu
論文名稱: 鋅酞花青薄膜之蒸鍍與熱處理條件之探討及其對太陽能電池效率之影響
The growth and post-deposition annealing of thermal evaporated ZnPc thin films and their effects on the solar cell performances
指導教授: 劉進興
Chin-hsin Liu
口試委員: 戴龑
Yian Tai
陳貴賢
Kuei-hsien Chen
林麗瓊
Li-Chyong Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 140
中文關鍵詞: 鋅酞花青晶相太陽能電池
外文關鍵詞: phthalocyanine, phase, solar cell
相關次數: 點閱:223下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討真空蒸鍍條件以及蒸鍍後之熱處理對ZnPc薄膜晶相與表面型態之影響;並製成有機太陽能電池以探討微觀結構對太陽能轉換效率之影響。我們以XRD、SEM與AFM分析晶相與表面型態,並測量I-V Curve以計算太陽電池效率。
    我們發現: (1) 於室溫下,以不同鍍率沈積所得之ZnPc,皆為α-form,經過高溫熱處理後,逐漸轉變為β-form;(2) 熱處理溫度增加時(200℃-350℃),β-ZnPc之比例增加,但熱處理時間(300℃, 30分-4小時),對ZnPc之晶相轉變並無太大影響;(3) 在基板溫度250℃蒸鍍,可得長鬚狀之β-ZnPc;(4) 以高鍍率沈積所得之薄膜,經過熱處理後,較易產生相變化,即由相轉變之能障減小;(5) 將在基板溫度250℃沈積所得之ZnPc膜,再以熱處理後,可得條板狀且結晶性較佳之β-ZnPc。
    製作結構為Au(20nm)/ ZnPc(60nm)/n-Si (525μm)/ Al(200nm)之太陽能電池,以觀察晶相對太陽能電池效率之影響,發現:α-ZnPc之光電轉換效率為0.015%,而以平板狀β-ZnPc薄膜製成之元件,其光電轉換效率可達0.14%。


    In this thesis, we study the phase transformation of zinc phthalocyanine (ZnPc) thin films and their effects on the solar cell performances. The ZnPc thin films are deposited by the vacuum evaporation technique. The effects of deposition conditions and the post-deposition annealing on the crystal structure and the surface morphology of ZnPc have been studied by the XRD, SEM and AFM. I-V measurement for the Au(20nm)/ ZnPc(60nm)/n-Si (525μm)/Al (200nm) devices.
    We find that: (1) Films deposited at room temperature and various rates are of the α-form, and are gradually transformed into theβ-form; (2) Higher annealing temperatures (200℃-350℃) will result in more β-forms in the film, but longer annealing time (30min.-4hr. at 300℃) have little effect; (3) Films deposited at the substrate temperature of 250℃ will give the β- form of the long whisker shape; (4) The phase transformation takes place easier with a lower energy barrier when the film is deposited at the higher rate; (5) Films deposited at 250℃ and then annealed at 300~350℃ are of the β-form with the lath shape and better crystallinity.
    That solar cells based on the α-ZnPc show an average efficiency of 0.015% , while those based on the lath-like β-ZnPc show an average efficiency of 0.14%.

    中文摘要 I 英文摘要 II 誌謝 III 目錄 IV 表目錄 VIII 圖目錄 X 第一章 緒論 1 1-1 前言 1 1-2 材料特性 3 1-2-1 半導體簡介 3 1-3 太陽光的光譜分佈 5 1-4 太陽能電池操作原理與轉換效率 6 1-4-1 太陽能電池工作原理 6 1-4-2 太陽能電池轉換效率 9 1-4-3 太陽能電池之等效電路 11 1-4-4 太陽能電池之量子效率 13 第二章 文獻回顧 15 2-1 酞花青之簡介 15 2-2 晶相簡介 18 2-3 Pc之晶相與表面型態 21 2-3-1 H2Pc之晶相與表面型態 21 2-3-2 CuPc之晶相與表面型態 23 2-3-3 ZnPc之晶相與表面型態 24 2-3-4 具有取代基Pc之晶相與表面型態 28 2-4 溫度處理對Pc薄膜之半導體特性的影響 28 2-5 不同結構之有機太陽能電池 29 第三章 實驗方法與步驟 31 3-1 實驗藥品 31 3-2 實驗儀器 32 3-3 ZnPc之純化 34 3-4 Si基板之清洗程序 35 3-5 晶相與表面型態分析之薄膜製備 35 3-5-1 ZnPc薄膜製備 35 3-5-1-1 真空與薄膜沈積關係 37 3-5-2 ZnPc薄膜之熱處理 38 3-6 有機太陽能電池製備 39 3-7 量測儀器 40 3-7-1 X-ray繞射分析儀 40 3-7-2 場發射掃瞄式電子顯微鏡 40 3-7-3 紫外-可見光光譜儀 41 3-7-4 太陽光源模擬系統 41 3-8 實驗流程 42 第四章 實驗結果與討論 43 4-1 ZnPc之純化 43 4-2 不同晶相吸收光譜之比較 48 4-3 ZnPc晶相之鑑定 51 4-4 熱處理溫度之影響 55 4-5 熱處理時間之影響 62 4-6 基板溫度之影響 67 4-6-1 基板加熱與蒸鍍後,熱處理之比較 72 4-7 蒸鍍速率之影響 73 4-7-1 基板溫度室溫下,蒸鍍速率之影響 73 4-7-2 基板溫度為250℃時,蒸鍍速率之影響 77 4-7-3 蒸鍍速率對熱處理溫度之效應 82 4-8 高基板溫度下,熱處理溫度之影響 91 4-9 ZnPc膜之晶相與熱處理溫度、時間與蒸鍍速率、基板溫 度之影響 97 4-10太陽能電池之結構 99 4-11晶相對太陽能電池效率之影響 101 4-11-1熱處理溫度對太陽能電池效率之影響 101 4-11-2 基板溫度對太陽能電池效率之影響 107 4-11-3總結 112 4-12太陽能電池之外部量子效率 115 第五章 結論與建議 117 5-1 結論 117 5-2 建議 120 第六章 參考文獻 121

    [1] A. Amendola, Polytechnic Institute of Brooklyn, New York, USA, ICDD Grant-in-Aid, (1960).
    [2] B. Maennig, M. Pfeiffer, Phys. Rev. B , 64, 195208 (2001).
    [3] D. A. Neamen, “Semiconductor Physics and Devices”, chap. 9 (2003).
    [4] G. Jarosz, P .D. Quinn, N. Stephan, L. Brehmer, Thin Solid Films, 474, 301 (2005).
    [5] H. Hoppea, N. S. Sariciftci , “Organic solar cells: An overview”, J. Mater. Res., 19, 7 (2004).
    [6] H. J. Wagner, R. Loutfy, Cheng-Kuo Hsiao, J. Mater. Sci., 2781(1982).
    [7] J. H. Sharp, R .L. Miller, J. Phys. Chem., 72, 3335(1968).
    [8] J. Sindu Louis, D. Lehmann, M. Friedrich, and D. R. T. Zahn, J. Appl. Phys., 101, 013503 (2007).
    [9] K. Yoshino, K. Kaneto, J. Phys. Soc. J. , 35, 1 (1973).
    [10] L. Edwards, M. Gouterman, J. Mol. Spectros., 33, 292 (1970).
    [11] L. Lozzi and S. Santucci, S. La Rosa, B. Delley, S. Picozzi, J. Chem. Phys., 121, 4 , 1883(2004).
    [12] M. A. Green1, K. Emery, “Solar Cell Efficiency Tables (Version 27)“, Prog. Photovolt: Res. Appl. , 14, 45 (2006).
    [13] M. Ashida, N. Uyeda, E. Suito, Bull. Chem. Soc. Jpn., 39, 2616 (1966).
    [14] M. J. Cook, Pure Appl. Chem., 71, 2145 (1999).
    [15] M.K. Debe, R.J. Poirier, K.K. Kam, Thin Solid Films, 197, 335 (1991).
    [16] M.M. El-Nahass, H.M. Zeyada, M.S. Aziz , N.A. El-Ghamaz , Optical Materials, 27, 491 (2004).
    [17] M.M. El-Nahass, H.M. Zeyada, M.S. Aziz , N.A. El-Ghamaz, Solid-State Eletronics, 49, 1314(2005).
    [18] M.M. El-Nahass, K.F. Abd-El-Rahman , A.A.M. Farag, A.A.A. Darwish, Organic Electronics, 6, 129 (2005).
    [19] M. Szybowicz, T. Runka, M. Drozdowski, W. Bala, M. Wojdyla, A. Grodzicki, P. Piszczek, A. Bratkowski, J. Mol. Struct., 830, 14(2007).
    [20] N. B. McKeown, “Phthalocyanine Materials”.
    [21] N. Uyeda, M. Ashida, E. Suito, J. Appl. Phys., 36, 1453 (1965).
    [22] O. Berger, W. J. Fischer, B. Adolphi, S. Tierbach, J. mater. sci., 11, 331 (2000).
    [23] P. B. Mark, J. T Nicole., Chem. Phys. Lett., 298, 302 (1998).
    [24] P. P. S. Lee, T. Ngai, Jian-Dong Huang, C. Wu, Wing-Ping Fong,and D. K. P. Ng, Macromolecules, 36, 7527(2003).
    [25] R. F. Salzman, J. Xue, B. P. Rand, A. Alexander, M. E. Thompson, S. R. Forrest, Organic Electronics, 6, 242 (2005).
    [26] R. Sathyamoorthy , S. Senthilarasu, J. Electrochem. Soc., 154(1), H1(2007).
    [27] S. N. Alamri, A .A. Joraid and S. Y. Al-Raqa, Thin solid films, 510, 265 (2006).
    [28] S. Senthilarasu, R. Sathyamoorthy, S. K. Kulkarni , Mater. Sci. Eng. B, 122, 100 (2005).
    [29] S. Senthilarasu, R. Sathyamoorthy , S. Lalitha, A. Subbarayan, Solid-State Electronics, 49, 813 (2005).
    [30] S. Senthilarasu, R. Sathyamoorthy, J. A. Ascencio, Soo-Hyoung Lee and Y. B. Hahn, J. Appl. Phys. , 101, 034111 (2007).
    [31] S. Yim, S. Heutz, and T. S. Jones, J. Appl. Phys. , 91, 3632 (2002).
    [32] T. kobayashi, N. Uyeda, and E. Suito, J. Phy. Chem., 72, 2446(1968).
    [33] V. D. Mihailetchi, P. W. M. Blom, J. C. Hummelen, and M. T. Rispens, J. Appl. Phys., 94, 10, 15 November, 6849 (2003).
    [34] Y. Terao, H. Sasabe, C. Adachi, Appl. Phys. Lett., 90, 103515 (2007).
    [35] Z. Bao, A. J. Lovinger, and A. Dodabalapur, Appl. Phys. Lett., 69, (20), 11 November, 3066(1996).
    [36] Z. T. Liu, H. S. Kwok, A. B. Djurišić, J. Phys. D: Appl. Phys., 37, 678 (2004).
    [37] 許嘉文,高效率有機/無機異質結構太陽能電池之探索,國立海洋大學(2006)。
    [38] 陳方中,有機薄膜太陽能電池,工業材料,219期,150(2005)。
    [39] 陳錦山,材料進階實驗, 逢甲大學。
    [40] 中國投資資訊網http://www.econet.com.cn/reports/2006159taiyangnengdianc.htm

    QR CODE