簡易檢索 / 詳目顯示

研究生: 楊鈞婷
Chun-Ting Yang
論文名稱: 絕緣層覆矽光環形共振腔於微波相位研究
Microwave Phase Study by SOI Optical Ring Resonator
指導教授: 徐世祥
Shih-Hsiang Hsu 
口試委員: 張勝良 
Sheng-Lyang Jang
莊敏宏
Miin-Horng Juang
范慶麟 
Ching-Lin Fan
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 110
中文關鍵詞: 環形共振腔相位
外文關鍵詞: Ring Resonator, Phase
相關次數: 點閱:147下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 絕緣層上覆矽波導的高折射率差,使具高效率與高品質的特性且成本低,加上其相容於金屬氧化物半導體標準製程,故常廣泛應用於高速、低功耗光電元件。此外,矽與埋藏氧化層之間的高折射率差,使得元件能縮至次微米等級,故以次微米矽線波導設計之環形共振腔可具高積體化光路與易操控自由頻譜範圍(Free Spectral Range, FSR),常被作為光通訊元件。
    在微波工程中,典型的電相位陣列通常會需要數個相位偏移器來達成,而光學元件提供了小尺寸、大頻寬與快速可調性等優點,故常被運用在相位偏移器上,有助於相位陣列之微小化。因此近年來,積體化的絕緣層上覆矽微環形共振腔,常被用來作為相位的偏移器。本論文使用多模干涉器(Multimode Interference)取代方向耦合器(Directional Coupler)作為環形共振腔的耦合元件。雖然多模干涉器的光波損耗較高,但對於波長與耦合率的影響較小,能在較大的頻寬下維持穩定帶寬,因此作為耦合的原因之ㄧ。在此我們設計不同環長的環形共振腔,並改變特定極化偏振,產生不同的自由頻譜範圍與品質參數(Quality Factor),並在矽波導上沉積金屬鈦作為微型可調加熱器與控制傳輸的調變訊號,同時觀察相位與傳輸變化。
    對製作出的多模干涉器元件,理想上為50:50的分光比,實驗數據顯示TE極化時之分光比為56 : 44,TM極化時分光比為54 : 46,同時微型可調加熱器對多模干涉器的影響將一併討論。為瞭解極化有關的相位影響,低同調干涉測得矽線波導的雙折射係數為0.27。最後我們成功以微波光電為基礎製作了相位偏移器,相位偏移量可達到350度左右。


    A silicon-on-insulator platform based optical waveguides with large refractive index provides high efficiency, high quality, low cost and its fully compatible processing with the complementary metal-oxide-semiconductor (CMOS) standard process. For these reasons, it is extensively utilized for both of high-speed and low power consumption optoelectronic devices. Moreover, the large refractive index difference between silicon and silicon dioxide layers can significantly reduce the device form size to submicron scale. Therefore, the silicon wire based optical ring resonator owns the potential of the highly integrated optical circuit and easy manipulation on the free spectral range (FSR) in optical communications.
    In Microwave Engineering, the electrical phased array is typically composed by numerous phase shifters. However, the photonics, offering many advantages on the compact size, large bandwidth, and fast tunability, was then made into small footprint phase shifters. In this thesis, even though the multimode interference (MMI) owns the higher propagation loss compared with the directional coupler, MMI was still utilized as the coupling function in the silicon-on-insulator (SOI) microring resonator phase shifter due to its wavelength independent spectrum. Several different lengths of optical rings, matched to FSR and quality factor were designed, fabricated, and demonstrated for phase shifting applications. Titanium was deposited on silicon wire optical ring resonator to study the variations on phase and transmission.
    The theoretical power splitting ratio of MMI was 50:50. The experimental data were showing the power splitting ratios were 56:44 and 54:46, respectively, for TE and TM polarization. The thermal effect on MMI was also discussed using the deposited titanium. To fully understand the polarization dependent phase, a 0.27 birefringence of silicon wire was observed by the optical low coherence interferometer. Finally, the 350-degree phase shifting was successfully demonstrated on the optical ring resonator for microwave photonics applications.

    摘要 Abstract 第一章 緒論 1.1簡介 1.2研究動機 1.3論文架構 第二章 矽線波導理論 2.1積體化矽光子學 2.1.1積體光學基材 2.1.2 積體化絕緣層上覆矽波導 2.2矽線波導之單多模條件 2.3雙折射效應 2.4 矽線波導傳播損耗 第三章原理 3.1訊號調變 3.1.1 類比訊號調變 3.1.2 振幅調變 3.1.3雙邊帶載波抑制調變(DSB-SC) 3.1.4 單邊帶調變 3.2 環形共振器理論 3.2.1 Fabry-Perot Etalon(法布里-珀羅標準具): 3.2.2 環形共振腔光場 3.2.3環型共振腔 3.3環形共振腔運用於相位偏移理論 第四章 模擬分析 4.1光束傳播法 4.1.1 光束傳播法原理 4.1.2 SOI波導中的有效折射率 4.1.3 梯形波導對折射率影響 4.2時域有限差分法 4.2.1時域有限差分法原理 4.2.2 方向耦合器 4.2.3 多模干涉器 4.3 光場於環形共振腔之傳輸響應與相位解析 第五章 量測技術與結果 5.1 單邊帶調變與雙邊帶調變的實作 5.2極化控制分析 5.4量測矽波導雙折射效應 5.5相位偏移器製作與品質量測 第六章 討論與未來展望 6.1討論 6.2未來展望 參考文獻

    [1] M. R. Fisher and S. L. Chuang, "A microwave photonic phase-shifter based on wavelength conversion in a DFB laser," Photonics Technology Letters, IEEE, vol. 18, pp. 1714-1716, 2006.
    [2] A. Loayssa and F. J. Lahoz, "Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation," Photonics Technology Letters, IEEE, vol. 18, pp. 208-210, 2006.
    [3] W. Xue, S. Sales, J. Capmany, and J. Mork, "Microwave phase shifter with controllable power response based on slow- and fast-light effects in semiconductor optical amplifiers," Opt. Lett., vol. 34, pp. 929-931, 2009.
    [4] W. Xue, Y. Chen, F. Ohman, S. Sales, and J. Mork, "Enhancing light slow-down in semiconductor optical amplifiers by optical filtering," Opt. Lett., vol. 33, pp. 1084-1086, 2008.
    [5] R. A. Soref, "Silicon-based optoelectronics," Proceedings of the IEEE, vol. 81, pp. 1687-1706, 1993.
    [6] RG Hunsperger Integrated Optics: Theory and Technology 5nd edition, pp. 12
    [7] D. Liang and J. E. Bowers, "Recent progress in lasers on silicon," Nat Photon, vol. 4, pp. 511-517.
    [8] R. A Soref, J. Schmidtchen, and K. Petermann, "Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2 ," IEEE Journal of Quantum Electronics., vol.27, no.8, pp.1971-1974, 1991.
    [9] Vescan L., Vonsovici A. , "The single-mode condition for semiconductor rib waveguides with large cross section," Lightwave Technology, Journal of , vol.16, no.10, pp.1851-1853, 1998
    [10]S. P. Pogossian, L. Vescan, and A. Vonsovici, "The single-mode condition for semiconductor rib waveguides with large cross section," Lightwave Technology, Journal of, vol. 16, pp. 1851-1853, 1998.
    [11]G. Ghosh, “Fiber lasers and amplifiers: Technology towards the complete photonics age,” Telematics India, vol. 4, pp. 33-37,1990.
    [12]G. C. Bhar, "Refractive index interpolation in phase-matching," Appl. Opt., vol. 15, pp. 305_1-307, 1976.
    [13]C. Seong Phun, P. Ching Eng, L. Soon Thor, G. T. Reed, and V. M. N. Passaro, "Single-mode and polarization-independent silicon-on-insulator waveguides with small cross section," Lightwave Technology, Journal of, vol. 23, pp. 2103-2111, 2005.
    [14]J. Mastsuoka, N. Kitamura, S. Fujinage, T. Kitaoka, and H. Yamashita, “Temperature dependence of refractive index of SiO2 Glass,” J. Noncry. Sol., vol. 135, pp. 86-89, 1991.
    [15]F.A. Jenkins and H.E. White, Fundamentals of Optics, McGraw-Hill, 4th, ed., 1981.
    [16]Eugene Hecht, “Optices,” Addison Wesley, 4th. Ed. p.297
    [17]H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S.-i. Itabashi, "Ultrasmall polarization splitter based on silicon wire waveguides," Opt. Express, vol. 14, pp. 12401-12408, 2006.
    [18]K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, H. Shinojima, H. Nishi, and S. I. Itabashi, "Polarization diversity circuit based on a double-core structure consisting of silicon photonic wire and silicon-oxynitride waveguide," in Proceedings of SPIE - The International Society for Optical Engineering, San Jose, CA, 2009.
    [19]P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, "Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography," IEEE Photonics Technology Letters, vol. 16, pp. 1328-1330, 2004.
    [20]K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, "Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction," Opt. Lett., vol. 26, pp. 1888-1890, 2001.
    [21]K. K. Lee, D. R. Lim, H. C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, "Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model," Applied Physics Letters, vol. 77, pp. 1617-1619, 2000.
    [22]Y. Hibino, "Recent advances in high-density and large-scale AWG multi/demultiplexers with higher index-contrast silica-based PLCs," Selected Topics in Quantum Electronics, IEEE Journal of, vol. 8, pp. 1090-1101, 2002.
    [23] A. Sakai, H. Go, and T. Baba, "Sharply bent optical waveguide silicon-on-insulator substrate," in Physics and Simulation of Optoelectronic Devices IX, San Jose, CA, USA, 2001, pp. 610-618.
    [24]M. Heiblum and J. Harris, "Correction to "Analysis of curved optical waveguides by conformal transformation"," Quantum Electronics, IEEE Journal of, vol. 12, pp. 313-313, 1976.
    [25]K. Okamoto, "Fundamentals of Optical Waveguides," cademic Press, Elsevier Inc. Amster-dam, Boston, Heidelberg, London 2006.
    [26]W. N. Ye, D. X. Xu, S. Janz, P. Cheben, M. J. Picard, B. Lamontagne, and N. G. Tarr, "Birefringence control using stress engineering in silicon-on-insulator (SOI) waveguides," Lightwave Technology, Journal of, vol. 23, pp. 1308-1318, 2005.
    [27]S. O Duill, E. Shumakher, and G. Eisenstein, "Noise contribution of semiconductor optical amplifier based photonic phase shifters," in Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS), 2010 Conference on, pp. 1-2.
    [28]P. Minhao, L. Liu, X. Weiqi, D. Yunhong, L. H. Frandsen, O. Haiyan, K. Yvind, and J. M. Hvam, "Tunable Microwave Phase Shifter Based on Silicon-on-Insulator Microring Resonator," Photonics Technology Letters, IEEE, vol. 22, pp. 869-871.
    [29]葉子豪,微環形共振腔於生醫感測器之應用,國立台灣科技大 學,台北,2011
    [30]林奕良,「矽線波導耦光效率之研究」,國立台灣科技大學, 台北,2010
    [31]M. D. Feit and J. J. A. Fleck, "Light propagation in graded-index optical fibers," Appl. Opt., vol. 17, pp. 3990-3998, 1978.
    [32] M. D. Feit and J. J. A. Fleck, "Computation of mode properties in
    optical fiber waveguides by a propagating beam method," Appl. Opt., vol. 19, pp. 1154-1164, 1980.
    [33]Y. Kane, "Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media," Antennas and Propagation, IEEE Transactions on, vol. 14, pp. 302-307, 1966.
    [34]Y. Kane, "Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media," Antennas and Propagation, IEEE Transactions on, vol. 14, pp. 302-307, 1966.
    [35]K. L. Shlager and J. B. Schneider, "Selective survey of the finite-difference time-domain literature," IEEE Antennas and Propagation Magazine, vol. 37, pp. 39-57, 1995.
    [36]wikipedia : http://en.wikipedia.org/wiki/FDTD
    [37]G. C. Bhar, "Refractive index interpolation in phase-matching," Appl. Opt., vol. 15, pp. 305_1-307, 1976.
    [38]Q. Huang, Y. Yu, and J. Yu, "Experimental investigation on submicron rib waveguide microring/racetrack resonators in silicon-on-insulator," Optics Communications, vol. 282, pp. 22-26, 2009.
    [39]K. Okamoto, "Fundamentals of Optical Waveguides," cademic Press, Elsevier Inc. Amster-dam, Boston, Heidelberg, London 2006.
    [40]D. Xu, A. Densmore, P. Waldron, J. Lapointe, E. Post, A. Dele, S. Janz, P. Cheben, J. Schmid, and B. Lamontagne, "High bandwidth SOI photonic wire ring resonators using MMI couplers," Opt. Express 15, 3149-3155, 2007.
    [41] J. Yao, " A Tutorial on Microwave Photonics ," Photonics Society Newsletter, IEEE, vol.26, pp. 5, 2012.
    [42] D. Jager, R. Heinzelmann, and A. Stohr, "Microwave Photonic Devices and
    Systems," Optoelektronik, Lotharstrasse 55, Germany.

    QR CODE