簡易檢索 / 詳目顯示

研究生: 莊如堯
Ju-yao Chuang
論文名稱: 提升可靠度以降低生命週期成本之最佳投資-以工業用泵浦為例
Optimal Reliability Improvement to Minimize the Life Cycle cost - Case of Industrial Pumps
指導教授: 葉瑞徽
Ruey-huei Yeh
口試委員: 林承哲
Cheng-jhe Lin
張文亮
Wen-liang Chang
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 52
中文關鍵詞: 可靠度提升壽期成本泵浦
外文關鍵詞: Reliability Improvement, Life Cycle Cost, Pumps
相關次數: 點閱:252下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 可靠度問題通常可分為可靠度設計與可靠度壽命二類,為求取系統於最適運作效率,尋求維持系統可靠度所需之最佳維修策略,而較少涉及於系統生命操作中期,運用以投資增加可靠度的方式求取系統生命週期成本最佳化的問題。本研究建立一數學迴歸模型來描述投資成本與可靠度之關係,用以預測提升可靠度之投資成本,同時結合以顧客導向為基礎之UNIFE生命週期成本模型,以降低生命週期成本為目標,尋求提升可靠度之最佳投資。再者,透過工業泵浦之實際案例,應用此模型進行數值分析,驗證透過可靠度的提升以降低系統之期望維修成本,藉以求得最佳的系統生命週期成本。


    Compare with most studies dividing the reliability issues into design or evaluate a system’s life cycle by a required reliability level to determine an optimal maintenance strategy for keeping a given operating performance, there are seldom studies concentrates on an optimal mid-life reliability improvement strategy to minimize a system’s life cycle cost. This study constructs a simple linear regression model to predict the investment for reliability improvement and use a customer-based life cycle cost model from UNIFE to determine an optimal total life cycle cost, using the hypothesis of the lowest life cycle cost is the optimal solution. Also, applying the model to industrial pumps as case to prove that through reliability improvement, pumps’s expected maintenance cost will decent and so the total life cycle cost.

    摘 要 i ABSTRACT ii 誌 謝 iii 圖目錄 vii 表目錄 viii 第一章 緒論 1 1.1 研究動機與目的 1 1.2 研究範圍 2 1.3 研究架構 3 第二章 文獻探討 5 2.1 可靠度研究 5 2.1.1 可靠度問題 5 2.1.2 效益後勤 7 2.2 生命週期成本 8 2.3 迴歸分析 9 2.3.1 迴歸分析的應用 10 2.3.2 迴歸分析注意事項 10 第三章 研究方法 13 3.1 研究架構 13 3.2 建立迴歸模型 13 3.2.1 資料收集 14 3.2.2 參數估計 15 3.2.3 殘值分析 16 3.2.4 係數分析 19 3.2.5 信賴區間圖 21 3.3 可行解範圍 21 3.3.1 生命週期成本 22 3.3.2 可行解範圍推導 25 第四章 數值分析 26 4.1 個案描述 26 4.1.1 泵浦的系統生命週期成本模型 26 4.1.2 泵浦案例數據 28 4.2 迴歸模型建立 29 4.2.1 資料收集 29 4.2.2 參數估計 29 4.2.3 殘值分析 31 4.3.4 係數分析 33 4.3.5 改善迴歸方程 34 4.3.6 信賴區間圖 39 4.3.7 可行解範圍 40 4.3 傳統型泵浦可靠度提升策略 41 4.3.1 傳統型泵浦成本分析 41 4.3.2 傳統型泵浦提升可靠度之最佳投資 42 4.4 智慧型泵浦可靠度提升策略 42 4.4.1智慧型泵浦成本分析 42 4.4.2智慧型泵浦提升可靠度之最佳投資 43 第五章 結論 44 5.1 研究成果 44 5.2未來研究方向 45 參考文獻 46 附錄1 49 附錄2 51 附錄3 52

    [1] 李乾銘,可靠度技術的執行與策略:如何規劃與執行實用可靠度工程,中衛發展中心,台北,(2002)
    [2] 林仲璋,以作業方案分析評選效益後勤實施方案,國立臺灣科技大學工業管理系EMBA碩士學位論文,(2010)
    [3] 林謙宏,應力調整策略對系統保養行為之探討,國立中央大學機械工程研究所碩士學位論文,(2008)
    [4] 高國欽、葉瑞徽、張文亮,「固定失效率降低法下租賃設備之最佳預防保養策略-以韋伯分配為例」,品質學報,15(4),第305-310頁,(2008)
    [5] 張文亮、葉瑞徽、謝宜玲,「產品生命週期內最佳維修策略與延長保固期對利潤之影響」,管理研究學報,11(1),第115-129頁, (2011)
    [6] 李順德,整體後勤支援原理與應用,台北,華泰書局,(1997)
    [7] 林英峰,壽命週期成本法,台北,台北商務印書館,(1977)
    [8] 關季明,維護度工程與系統妥善度,台北,中華民國品質學會,(2003)
    [9] 陳順宇,迴歸分析,四版,台北,三民書局,(2009)
    [10] Barnett, V., T. Lewis, Outliers in Statistical Data, 3rd ed, New York: John Wiley & Sons, (1994).
    [11] Berkowitz D., Gupta J. N. D., Simpson J. T., and McWilliams J., 〃Defining and Implementing Performance Based Logistics in Government,〃 Defense Acquisition Review, Vol 11, Number 3, pp.255-267, (2004).
    [12] Dankworth, T. and Risin M., 〃Design-To-Cost: The Road to Testability,〃 Proceedings of the IEEE 1978 National, pp.330-333 , (1978).
    [13] Forbes, J. A.; Lee, D. A. and Long, E. A., “Predicting Reliability Investment to Achieve Given Reliability Improvement,” Proceedings Annual Reliability and Maintainability Symposium, 279-284, (2009).
    [14] Gibbons, J. D. Nonparametric Methods for Quantitative Analysis, 2nd ed, Columbus, Ohio: American Sciences Press, (1985).
    [15] Geary, S. and Vitasek, K., 〃It's A War of Ideas〃, Aviation Week & Space Technology, Vol. 163, No. 17, pp.57-57, (2005).
    [16] Hydraulic Institute and Europump, Pump Life Cycle Costs: A Guide to LCC Analysis for Pumping Systems, Hydraulic Institute, Parsippany, N.J., (2001).
    [17] James A. Forbes, E. Andrew Long, David A. Lee, William J. Esmann, Lon C. Cross, “Developing a Reliability Investment Model,” LMI Government Consulting, (2008).
    [18] Kendall, M. G., Gibbons, J. D., Rank Correlation Methods, 5th ed, London: Oxford University Press, (1990).
    [19] Lewis, E.E., Introduction to Reliability Engineering, Wiley, Hoboken, (1995).
    [20] Looney, S. W., Gulledge, T. R., Jr., “Use of the Correlation Coefficient with Normal Probability Plots,” The American Statistician 39, pp. 75-79, (1985).
    [21] Michael H. Kutner, Christopher J. Nachtsheim, John Neter, Applied Linear Regression Models, 4e,McGraw-Hill,(2003)
    [22] Moubray, J., Reliability-Centered Maintenance, 2nd Ed., Industrial Press, (1997).
    [23] Nakagawa, T. and Kowada, M., “Analysis of a system with minimal repair and its application to replacement policy”, European Journal of Operational Research,vol. 12(2),pp. 176-182, (1983).
    [24] Shapiro, S. S., Wilk, M. B. “An analysis of Variance Test for Normality,” Biometrika vol.52, pp.591-611, (1965).
    [25] UNIFE LCC group, Guidelines for life cycle cost, Union of European Railway Industry, (2001).
    [26] Tutterow; V., Hovstadius, G. and McKane, A. “Going with the flow: Life cycle costing for industrial pumpingsystems,” Proceedings ACEEE Summer Study on Energy Efficiency in Industry, vol.2, 441-449 (2002).

    無法下載圖示 全文公開日期 2019/07/09 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE