簡易檢索 / 詳目顯示

研究生: 邱哲穎
Che-Ying Chiu
論文名稱: 高穩定性共路徑式散斑干涉儀應用於六自由度位移及旋轉角度量測之開發
Development of high stability speckle interferometer based on common-optical-path configuration for measurements of six-degree-of-freedom displacements and angles
指導教授: 謝宏麟
Hung-Lin Hsieh
口試委員: 李朱育
Ju-Yi Lee
鄧昭瑞
Geo-Ry Tang
陳品銓
Pin-Chuan Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 132
中文關鍵詞: 散斑干涉儀六自由度位移旋轉角共路徑
外文關鍵詞: Speckle interferometer, Six-degree-of-freedom, Displacement, Rotation angle, Common optical path
相關次數: 點閱:226下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近年來各類型的雷射干涉儀已被廣泛地應用在眾多的科學研究及工程領域中,藉由提供精準的位移或旋轉角度的量測資訊使定位系統或載具能維持高精度的定位性能,以期能準確完成製造程序、元件對位、幾何誤差量測與系統校正等目的,可見其扮演著舉足輕重的角色,相關的研究團隊或量測設備製造商(如Agilent, Zygo, Renishaw, SIOS)紛紛提出各式干涉儀技術,顯見其深具發展潛力及寬廣的應用前景。有鑑於此,本研究提出一套可用以進行六自由度位移及旋轉角度量測的新式共路徑式散斑干涉儀,主要是以「散斑干涉」做為核心技術,同時輔以「外差調制技術」、「對稱與非對稱式光路」、「共路徑式光路」、「共面偵測光路」及「自混雙頻技術」等設計概念進行系統開發,賦予系統具備優異的量測性能。
此套「共路徑式散斑干涉儀」使用電光調制技術來產生外差光源,用以降低環境低頻振動對量測結果所造成的影響,透過平行分束器及聚焦透鏡的搭配使每個偵測架構皆形成對稱式與非對稱式散斑光路架構,除了可使系統於單一偵測架構下即具備同時量測面內及面外位移的量測能力之外,亦能形成創新的共路徑式光路架構,使參考光束及量測光束行經相同的元件,當環境存在擾動時,參考與量測光束將感受到相同的擾動訊息,環境擾動對系統所造成的影響將於干涉訊號中被相互抵銷或補償,使系統具備優異的穩定性。此外,為了進一步延伸此套共路徑式散斑干涉儀的量測能力,本研究亦藉由自混雙頻技術與共面偵測技術的運用建構出三組偵測架構(每組皆具備面內及面外位移量測能力),而後透過比對每組偵測架構之間的量測結果,即可回推出待測粗糙面於三個旋轉軸向的角度變化量。
由實驗結果證明本研究所開發的「共路徑式散斑干涉儀」可在不改變光學架構下,同時提供六自由度位移及旋轉角的量測資訊,其面內、面外位移及旋轉角解析度分別為2.1 nm、5.5 nm及205 nrad,且位移及旋轉角於10分鐘之量測穩定度分別優於15.2 nm及750 nrad,重複性分別優於4.6 nm及240 nrad,證明具備優異的量測性能。


In recent years, various types of laser interferometers have been widely used in many fields of scientific research and engineering. By providing accurate measurement information of displacement or rotation angle, the positioning system can maintain high-precision positioning performance, so as to accurately complete the purposes of manufacturing process, component alignment, geometric error measurement and system correction. Relevant research teams or measurement equipment manufacturers such as Agilent, Zygo, Renishaw and SIOs have proposed various interferometer techniques, which shows that it has deep development potential and broad application prospects. In view of this, this study proposes a novel common path speckle interferometer for six-degree-of-freedom displacement and rotation angle measurement. It takes “speckle interferometry” as the core technique, supplemented by “heterodyne modulation”, “symmetric and asymmetric optical path”, “common optical path”, “co-planar detection configuration” and “self-mixing modulation” techniques, which gives the system excellent measurement performance.
This set of “common path speckle interferometer” is used electro-optic modulation technique to generate heterodyne light source to reduce the impact of environmental low-frequency vibration on measurement results. Through the combination of beam displacer and focusing lens, each detection configuration forms symmetrical and asymmetric speckle optical path configuration. In addition to the measurement ability of measuring in-plane and out-of-plane displacement at the same time under a single detection configuration, it can also form an innovative common optical path configuration, so that the reference beam and the measurement beam are passed through the same elements. When the environment is disturbed, the reference and measurement beams woulf receive the same disturbance information. The influence of the environmental disturbance on the system will be offset or compensated for each other in the interference signal, so that the system has excellent stability. In addition, in order to further extend the measurement capability of this set of common path speckle interferometer, this study also constructs three groups of detection configurations by using self-mixing dual frequency technique and coplanar detection technique (each group has in-plane and out of plane displacement measurement capability), and then compares the measurement results between each group of detection configurations, the angular variation of the rough surface in three rotating axes can be obtained.
The experimental results show that the “common path speckle interferometer” developed in this study can provide the measurement information of six-degree-of-freedom displacement and rotation angle without changing the optical configuration. The in-plane, out-of-plane displacement and rotation angle resolutions are 2.1 nm, 5.5 nm and 205 nrad respectively while the measurement stability of displacement and rotation angle is better than 15.2 nm and 750 nrad in 10 minutes, respectively and repeatability is better than 4.6 nm and 240 nrad, respectively, proving that the proposed system has excellent performance.

摘要 I 致謝 V 符號說明 VI 目錄 IX 圖目錄 XII 表目錄 XVI 第一章 緒論 1 1.1 研究背景 1 1.2 文獻回顧 2 1.2.1 外差干涉技術之文獻回顧 3 1.2.2 散斑干涉技術之文獻回顧 10 1.2.3 共路徑式干涉儀之文獻回顧 17 1.2.4 多自由度干涉儀之文獻回顧 19 1.3 研究目的 23 1.4 論文架構 24 第二章 基礎理論 27 2.1 外差干涉術原理說明 27 2.2.1 賽曼雷射原理說明 28 2.2.2 聲光調變器原理說明 29 2.2.3 電光調變器原理說明 31 2.2.4 波長調制技術原理說明 33 2.2 散斑干涉術原理說明 34 2.2.1 影像式散斑干涉術 34 2.2.2 都卜勒移頻原理說明 37 2.2.3 訊號式散斑干涉術原理說明 38 2.2.4 對稱式散斑光路設計原理說明 40 2.2.5 非對稱式散斑光路設計原理說明 41 2.3 外差相位解調技術原理說明 43 2.4 小結 45 第三章 共路徑式散斑干涉儀系統開發 47 3.1 單自由度共路徑式散斑干涉儀之量測原理 47 3.2 雙自由度共路徑式散斑干涉儀之量測原理 49 3.3 四自由度共路徑式散斑干涉儀之量測原理 53 3.4 六自由度共路徑式散斑干涉儀之量測原理 58 3.5 軟體相位解調系統流程 61 3.6 研究所需之光學元件及實驗儀器 62 3.7 小結 64 第四章 實驗結果與討論 65 4.1 單自由度(x)量測實驗 65 4.2 雙自由度(x, z)量測實驗 67 4.3 訊號之頻譜分析 69 4.4 四自由度(x, y, z, θy)量測實驗 70 4.5 六自由度(x, y, z, θx, θy, θz)量測實驗 74 4.6 系統性能測試與討論 78 4.6.1 解析度量測 78 4.6.2 重複性量測 82 4.6.3 隨機波形運動量測 83 4.6.4 穩定度實驗 85 4.6.5 量測範圍實驗 85 4.7 透鏡焦距與系統性能之討論 87 4.8 小結 89 第五章 誤差分析 91 5.1 系統誤差 91 5.1.1 光學元件方位角所引入之相位誤差 92 5.1.2 光學元件消光比所引入的相位誤差 96 5.1.3 透鏡之對位誤差 100 5.2 隨機誤差 103 5.2.1 環境振動 104 5.2.2 電子雜訊 104 5.3 小結 104 第六章 結論與未來展望 106 6.1 結論 106 6.2 未來展望 108 參考文獻 109

[1] J. A. Dahlquist, D. G. Peterson and W. Culshaw, “Zeeman laser interferometer,” Appl. Phys. Lett. 9(5), 181-183 (1966).
[2] H. Choi, J. La and K. Park, “Electronic frequency modulation for the increase of maximum measurable velocity in a heterodyne laser interferometer,” Rev. Sci. Instrum. 77(10), 106102 (2006).
[3] T. L. Paoli and J. E. Ripper, “Direct modulation of semiconductor lasers,” Proc. IEEE. 58(10), 1457-1465 (1970).
[4] K. Tatsuno and Y. Tsunoda, “Diode laser direct modulation heterodyne interferometer,” Appl. Opt. 26(1), 37-40 (1987).
[5] M. G. Gazalet, M. Ravez, F. Haine, C. Bruneel and E. Bridoux, “Acousto-optic low-frequency shifter,” Appl. Opt. 33(7), 1293-1298 (1994).
[6] H. K. Teng and K. C. Lang, “Heterodyne interferometer for displacement measurement with amplitude quadrature and noise suppression,” Opt. Commun. 280(1), 16-22 (2007).
[7] Y. Park and K. Cho, “Heterodyne interferometer scheme using a double pass in an acousto-optic modulator,” Opt. Lett. 36(3), 331-333 (2011).
[8] Y. Le, S. Jin and T. Jin, “A novel and simple heterodyne interferometer scheme,” Proc. SPIE 11717, 117171L (2020).
[9] D. C. Su, M. H. Chiu and C. D. Chen, “Simple two-frequency laser,” Precis. Eng. 18(2-3), 161-163 (1996).
[10] J. Y. Lee, H. Y. Chen, C. C. Hsu and C. C. Wu, “Optical heterodyne grating interferometry for displacement measurement with subnanometric resolution,” Sens. Actuator A Phys. 137(1), 185-191 (2007).
[11] C. C. Hsu, Y. Y. Sung, Z. R. Lin and M. C. Kao, ‘‘Prototype of a compact displacement sensor with a holographic diffraction grating,’’ Opt. Laser Technol. 48, 200-205 (2013).
[12] D. Guo, L. Shi, Y. Yu, W. Xia and M. Wang, “Micro-displacement reconstruction using a laser self-mixing grating interferometer with multiple-diffraction,” Opt. Express 25(25), 31394-31406 (2017).
[13] S. H. Chen, H. L. Hsieh, H. Y. Chen and Y. X. Lai, “Development of a double-diffraction grating interferometer for measurements of displacement and angle,” Proc. SPIE 11352, 113521K (2020).
[14] J. W. Goodman, ‘‘Some fundamental properties of speckle,’’ JOSA. 66(11), 1145-1150 (1976).
[15] J. A. Leendertz, “Interferometric displacement measurement on scattering surfaces utilizing speckle effect,” J. Phys. E Sci. Instrum. 3(3), 214 (1970).
[16] J. A. Leendertz and J. N. Butters, “An image-shearing speckle-pattern interferometer for measuring bending moments.” J. Phys. E 6(11), 1107 (1973).
[17] S. Nakadate, T. Yatagai and H. Saito, “Digital speckle-pattern shearing interferometry.” Appl. Opt. 19(24), 4241-4246 (1980).
[18] M. Sjödahl, ‘‘Calculation of speckle displacement, decorrelation, and object-point location in imaging systems,’’ Appl. Opt. 34(34), 7998-8010 (1995).
[19] D. Francis, D. Masiyano, J. Hodgkinson and R. P. Tatam, “A mechanically stable laser diode speckle interferometer for surface contouring and displacement measurement.” Meas Sci Technol. 26(5), 055402 (2015).
[20] M. Lu, S. Wang, L. Bilgeri, X. Song, M. Jakobi and A. W. Koch, “Online 3D displacement measurement using speckle interferometer with a single illumination-detection path.” Sensors 18(6), 1923 (2018).
[21] P. Yan, X. Liu, F. Sun, Q. Zhao, S. Zhong and Y. Wang, “Measurement of In-Plane Displacement in Two Orthogonal Directions by Digital Speckle Pattern Interferometry.” Appl. Sci. 9(18), 3882 (2019).
[22] A. J. Moore and J. R. Tyrer, “An electronic speckle pattern interferometer for complete in-plane displacement measurement,” Meas Sci Technol. 1(10), 1024 (1990).
[23] R. Dändliker and J. F. Willemin, “Measuring microvibrations by heterodyne speckle interferometry,” Opt. Lett. 6(4), 165-167 (1981).
[24] J. Y. Lee, K. Y. Lin and S. H. Huang, “Wavelength-modulated heterodyne speckle interferometry for displacement measurement,” Metrol. Meas. Syst. 7389, 73892G (2009).
[25] J. Y. Lee, M. P. Lu, K. Y. Lin and S. H. Huang, “Measurement of in-plane displacement by wavelength-modulated heterodyne speckle interferometry,” Appl. Opt. 51(8), 1095-1100 (2012).
[26] Y. Fainman, J. Shamir, D. Peri and A. Brunfeld, “Polarization properties of speckle patterns scattered from rough conductors,” J. Opt. Soc. Am. 4(12), 2205-2212 (1987).
[27] H. L. Hsieh and P. C. Kuo, “Heterodyne speckle interferometry for measurement of two-dimensional displacement,” Opt. Express 28(1), 724-736 (2020).
[28] H. L. Hsieh and B. Y. Sun, “Development of a Compound Speckle Interferometer for Precision Three-Degree-of-Freedom Displacement Measurement,” Sensors 21(5), 1828 (2021).
[29] P. Elies, B. L. Jeune, F. L. Roy-Brehonnet, J. Cariou and J. Lotrian, “Experimental investigation of the speckle polarization for a polished aluminium sample,” J. Phys. D Appl. Phys. 30(1), 29 (1997).
[30] H. L. Hsieh, J. Y. Lee, W. T. Wu, J. C. Chen, R. Deturche and G. Lerondel. “Quasi-common-optical-path heterodyne grating interferometer for displacement measurement,” Meas. Sci. Technol. 21(11), 115304 (2010).
[31] J. Y. Lee and M. P. Lu, “Optical heterodyne grating shearing interferometry for long-range positioning applications,” Opt. Commun. 284(3), 857-862 (2011).
[32] C. C. Wu, C. C. Hsu, J. Y. Lee and Y. Z. Chen, “Heterodyne common-path grating interferometer with Littrow configuration,” Opt. Express 21(11), 13322-13332 (2013).
[33] C. C. Wu, Y. Z. Chen and C. H. Liao, “Common-path laser planar encoder,” Opt. Express 21(16), 18872-18883 (2013).
[34] 廖家賢,「六自由度聚焦式雷射干涉儀」,碩士論文,國立台灣科技大學,(2018)。
[35] W. Gao and A. Kimura, “A three-axis displacement sensor with nanometric resolution,” CIRP Ann. 56(1), 529-532 (2007).
[36] H. L. Hsieh, J. C. Chen, G. Lerondel and J. Y. Lee, “Two-dimensional displacement measurement by quasi-common-optical-path heterodyne grating interferometer,” Opt. Express 19(10), 9770-9782 (2011).
[37] X. Li, W. Gao, H. Muto, Y. Shimizu, S. Ito and S. Dian, “A six-degree-of-freedom surface encoder for precision positioning of a planar motion stage,” Precis. Eng. 37(3), 771-781 (2013).
[38] H. L. Hsieh and S. W. Pan, “Development of a grating-based interferometer for six-degree-of-freedom displacement and angle measurements,” Opt. Express 23(3), 2451-2465 (2015).
[39] X. Li, W. Gao, H. Muto, Y. Shimizu, S. Ito and S. Dian, “A six-degree-of-freedom surface encoder for precision positioning of a planar motion stage.” Precis. Eng. 37(3), 771-781 (2013).
[40] K. Zhu, B. Guo, Y. Lu, S. Zhang and Y. Tan, “Single-spot two-dimensional displacement measurement based on self-mixing interferometry,” Optica 4(7), 729-735 (2017).
[41] D. Guo, Y. Yu, L. Kong, W. Xia and M. Wang, “Self-mixing grating interferometer with dual laser diodes for sensing of 2-D dynamic displacement,” IEEE J. Quantum Electron. 54(5), 1-6 (2018).
[42] N, Bobroff, “Recent advances in displacement measuring interferometry,’’ Meas. Sci. Technol. 4(9), 907-926 (1993).

無法下載圖示 全文公開日期 2026/09/15 (校內網路)
全文公開日期 2026/09/15 (校外網路)
全文公開日期 2026/09/15 (國家圖書館:臺灣博碩士論文系統)
QR CODE