簡易檢索 / 詳目顯示

研究生: 陳彥翔
Yan-Xiang Chen
論文名稱: 不同電子阻擋層結構對氮化鎵光電晶體光電特性的影響
Influence of different electron blocking layer structures on photoelectric properties of GaN-based phototransistors
指導教授: 葉秉慧
Ping-Hui Yeh
口試委員: 李奎毅
Kuei-Yi Lee
范慶麟
Ching-Lin Fan
周錫熙
Hsi-Hsir chou
葉秉慧
Pinghui Sophia Yeh
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 145
中文關鍵詞: 氮化鎵光電晶體超晶格電子阻擋層
外文關鍵詞: GaN, Phototransistors, Super Lattice, Electron Blocking Layer
相關次數: 點閱:187下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文使用具有超晶格(Super Lattice)結構的電子阻擋層(Electron Blocking Layer, EBL)的商用氮化鎵藍光LED晶圓,利用矽擴散的方式,將最上層的p-GaN反轉成n-GaN,使晶圓結構從原本p-i-n結構變成n-p-i-n結構光電晶體光偵測器,量測其暗電流(Dark current)、外部量子效應(EQE)、計算出響應率、響應時間。並與電子阻擋層結構為單一AlGaN材質的氮化鎵LED晶圓所製造的n-p-i-n結構光電晶體光偵測器(稱為A型光電晶體)進行比較。
  使用超晶格的光電晶體光偵測器(稱為C型光電晶體)的元件在峰值波長384 nm,當偏壓VCE為0V、1.5V、3V、5V、7V下,峰值的外部量子效率分別為27.9%、34.1%、39.1%、43.3%、56.2%,對應的響應率分別為0.09A/W、0.11 A/W、0.12 A/W、0.13 A/W、0.17 A/W;C型光電晶體逆向偏壓未超過5V時,無論是暗電流量測、外部量子效率量測以及響應速度與p-i-n光偵測器有十分相似的特性,但當偏壓超過5V後,暗電流與外部量子效率開始有明顯的增加,而尤其是量測在偏壓為7V時開始產生明顯的電流增益。C型光電晶體在外部量子效率上沒有A型光電晶體來的優異,但響應速度與A型光電晶體相比快上了許多,接近於p-i-n光偵測器。本論文有討論其元件物理的差異。


This paper used a commercial gallium nitride blue LED wafer with an electron blocking layer (EBL) of a superlattice structure. The Si-diffusion method is used to invert the uppermost p-GaN into n-GaN, and the wafer structure is changed from the original p-i-n structure to n-p-i-n structure phototransistors. Measuring the dark current, the external quantum efficiency (EQE), the response rate, and the response time. Furthermore, comparing with an n-p-i-n structure phototransistors (which were named as A-type phototransistors) manufactured by a gallium nitride LED wafer whose EBL structure is a single AlGaN material.
By using a phototransistors of superlattice structure (called a C-type photo-crystal) is at a peak wavelength of 384 nm, when the bias voltage VCE is 0V, 1.5V, 3V, 5V, 7V, the EQE of the peak is respectively 27.9%, 34.1%, 39.1%, 43.3%, 56.2%, the corresponding response rates were 0.09A/W, 0.11 A/W, 0.12 A/W, 0.13 A/W, 0.17 A/W, respectively. When the reverse bias of the C-type phototransistors does not exceed 5V, the dark current, the EQE, and the response speed with much similar characteristics to those of the p-i-n photodetector. However, when the bias voltage exceeds 5V, the dark current and EQE begin to increase significantly, especially the measurement begins to produce significant current gain at a bias voltage of 7V.
The C-type phototransistors are not as excellent as the A-type phototransistors in EQE. But the response speed is much faster than the A-type phototransistors, which is close to the p-i-n photodetector. This paper has discussed the differences in the physicals of its components.

摘要 I Abstract III 致謝 V 目錄 VI 圖目錄 XI 表目錄 XVIII 第一章 導論 1 1.1 緒論 1 1.2 文獻回顧與研究動機 3 第二章 光偵測器理論介紹 14 2.1光偵測器的工作原理 14 2.2光偵測器架構分類 17 2.2.1 p-n接面光二極體 17 2.2.2 p-i-n接面光二極體(p-i-n photodiode) 20 2.2.3 蕭基位障光二極體(Schottky barrier photodiode) 24 2.2.4 雪崩型光二極體(Avalanche photodiode) 26 2.2.5異質接面雪崩型光二極體 29 2.2.6光電晶體(Phototransistor) 31 2.3光偵測器架構分類 33 2.3.1 量子效率(Quantum Efficiency, QE) 33 2.3.2 響應率(Responsivity, R) 36 2.3.3響應速度(Response Speed) 37 2.3.4拒斥比(Rejection Ratio) 38 第三章 元件設計與製作 39 3.1 光偵測器元件設計 39 3.2 元件製程 43 3.2.1 活化製程(Activation) 45 3.2.2 絕緣製程(Isolation) 46 3.2.3 高台圖型製程(Mesa) 48 3.2.4 矽擴散製程(Silicon diffusion) 50 3.2.5 二氧化矽絕緣層沉積 51 3.2.6 ITO透明導電層沉積 52 3.2.7 N&P型電極沉積 53 第四章 儀器介紹 54 4.1 製程儀器介紹 54 4.1.1 旋轉塗佈機(Spin coater) 54 4.1.2 光罩對準機(Mask aligner) 55 4.1.3 電漿輔助化學氣相沉積系統 (Plasma-Enhanced Chemical Vapor Deposition, PECVD) 57 4.1.4 感應耦合電漿式離子蝕刻機(ICP-RIE) 58 4.1.5 電子束蒸鍍機(E-beam evaporator) 60 4.1.6 射頻濺鍍機(RF sputter) 61 4.1.7 快速升溫退火爐(Rapid thermal annealing, RTA) 63 4.2量測儀器介紹 64 4.2.1 I-V與L-I量測系統 64 4.2.2太陽模擬光源(Solar simulator) I-V量測 65 4.2.3光激發螢光(Photoluminescence, PL)量測系統 67 4.2.4外部量子效率量測系統 (Incident photon to electron conversion efficiency, IPCE) 68 4.2.5響應時間(Response time)量測系統 69 第五章 結果與討論 70 5.1 氮化鎵p-i-n光偵測器量測結果與討論 71 5.1.1 氮化鎵p-i-n光偵測器暗電流量測 71 5.1.2 氮化鎵p-i-n光偵測器之外部量子效率量測 73 5.1.3 氮化鎵p-i-n光偵測器之響應速度量測 77 5.2 氮化鎵n-p-i-n光電晶體量測結果與討論 86 5.2.1 氮化鎵n-p-i-n光電晶體暗電流量測 86 5.2.2 氮化鎵n-p-i-n光電晶體之外部量子效率量測 89 5.2.3 氮化鎵n-p-i-n光電晶體之響應速度量測 93 5.3 氮化鎵n-p-i-n光電晶體結果討論 104 第六章 結論與未來展望 112 6.1結論 112 6.2未來展望 116 參考文獻 117

[1] S. J. Chang, K. H. Lee, P. C. Chang, Y. C. Wang, C. L. Yu, C. H. Kuo, and S. L. Wu, “GaN-based Schottky barrier photodetectors with a 12-pair Mg Ny-GaN buffer layer,” IEEE J. Quantum Electron., vol. 44, no. 10, pp. 916-921, Oct. 2008.
[2] J. Pereiro, C. Rivera, A. Navarro, E. Munoz, R. Czernecki, S. Grzanka, and M. Leszczynski, “Optimization of InGaN-GaN MQW photodetector structures for high-responsivity performance,” IEEE J. Quantum Electron., vol. 45, no. 6, pp. 617-622, Jun. 2009.
[3] E.Fred Schubert, “Light-emitting diode.” Cambridge University Press, New York, 2006
[4] Y. Zhang, S. C. Shen, H. J. Kim, S. Choi, J. H. Ryou, R. D. Dupuis, B. Narayan, “Low-noise GaN ultraviolet p-i-n photodiodes on GaN substrates,’’ Appl. Phys. Lett., vol. 94, 221109, Jun. 2009.
[5] C. J. Collins, T. Li, D. J. H. Lambert, M. M. Wong, R. D. Dupuis, and J. C.Campbell, “Selective regrowth of Al0.30Ga0.70N p-i-n photodiodes,’’ Appl. Phys. Lett. vol. 77, 2810, Feb. 2000.
[6] Yi-Ting Huang, Pinghui S. Yeh, Yen-Hsiang Huang, Yu- Ting Chen, Chih-Wei Huang, Cong Jun Lin, and Wenchang Yeh, “High Performance InGaN p-i-n Photodetectors Using LED Structure and Surface Texturing, ’’ IEEE Photon Technol Lett, vol. 28, no. 6, pp. 605-608, Mar. , 2016.

[7] K. A. McIntosh, R. J. Molnar, L. J. Mahoney, A. Lightfoot, M. W. Geis, K. M. Molvar, I. Melngailis, R. L. Aggarwal, W. D. Goodhue, S. S. Choi, D. L. Spears, and S. Verghese, “GaN avalanche photodiodes grown by hydride vaporphase epitaxy,” Appl. Phys. Lett.75, 3485, Oct. 1999.
[8] B. Yang, T. Li, K. Heng, C. Collins, S. Wang, J. C. Carrano, R. D. Dupuis, J. C. Campbell, M. J. Schurman, and I. T. Ferguson, “Low dark current GaN avalanche photodiodes,’’ IEEE J. Quantum Electron., vol. 36, no. 12, pp. 1389-1391, Dec. 2000.
[9] J. B. Limb, D. Yoo, J. H. Ryou, W. Lee, S. C. Shen, R. D. Dupuis, M. L. Reed, C. J. Collins, M. Wraback, D. Hanser, E. Preble, N. M. Williams, and K. Evans, “GaN ultraviolet avalanche photodiodes with optical gain greater than 1000 grown on GaN substrates by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 89, 011112, Jun. 2006.
[10] S-C. Shen, Y. Zhang, D. Yoo, J-B. Limb, J-H. Ryou, P. D. Yoder, and R. D. Dupuis, “Performance of Deep Ultraviolet GaN Avalanche Photodiodes Grown by MOCVD,” IEEE Photon. Technol. Lett. , vol. 19, no. 21, pp. 1744-1746, Nov. 2007.
[11] Shen, S-C, Kao, T-T, Kim, H-J, Lee, Y-C, Kim, J, Ji, M-H, Ryou, J-H, Detchprohm, T, Dupuis, R.D, “GaN/InGaN avalanche phototransistors,” Appl. Phys. Express, vol.8, 032101, Feb. 2015.

[12] Wei Yang, Thomas Nohava, Subash Krishnankutty, Robert Torreano, Scott McPherson, and Holly Marsh, “High gain GaN/AlGaN heterojunction phototransistor”, Appl. Phys. Lett. vol. 73, no. 7, pp.978-980, Aug. 1998.
[13] R. Mouillet, A. Hirano, M. Iwaya, T. Detchprohm, H. Amano, and I. Akasaki, “Photoresponse and Defect Levels of AlGaN/GaN Heterobipolar Phototransistor Grown on Low-Temperature AlN Interlayer,” Jpn. J. Appl. Phys. 40, L498, May 2001.
[14] M. L. Lee, J. K. Sheu, Yung-Ru Shu, “Ultraviolet bandpass Al0.17Ga0.83N/GaN heterojunction phototransistors with high optical gain and high rejection ratio”, Appl. Phys. Lett. 92, 053506, Feb. 2008.
[15] Tsung-Ting Kao, Jeomoh Kim, Theeradetch Detchprohm, Russell D. Dupuis, “High-Responsivity GaN/InGaN Heterojunction Phototransistors”, IEEE Photon Technol Lett, vol. 28, no. 19, pp. 2035-2038, Jun. 2016.
[16] Min Zhu, Jun Chen, Jintong Xu, Xiangyang Li ”, Optimization of GaN/InGaN Heterojunction Phototransistor”, IEEE Photon Technol Lett, vol. 29, no. 4, pp. 373-376, Feb. 2017.
[17] Pinghui S. Yeh, Teng-Po Hsu, Yen-Chieh Chiu, Sian Yang, Cheng-You Wu, and Jung-Shan Liou ”, III-Nitride Phototransistors Fabricated on a Light-Emitting-Diode Epitaxial Wafer”, IEEE Photonics Technology Letters, vol. 29, no.19, pp. 1679-1682, Oct. 2017.
[18] 白世南,光電工程概論.ppt,建國科技大學電子工程系。
[19] 劉博文,光電元件導論,全威圖書有限公司,台北,2005。
[20] S. O. Kasap, OPTOELECTRONICS AND PHOTOICS principles and Practices, Peason Education Interational, 2001.

[21] Muth, J.F, J.H. Lee, I.K. Shmagin, R.M. Kolbas, H.C. Casey, Jr., B.P.Keller, U.K. Mishra, S.P. DenBaars, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett. vol. 71, issue 18, Nov. 1997.
[22] 葉秉慧、余孟純、林家煥、黃景勤,”一種以矽擴散型電流阻擋層製作氮化鎵垂直共振腔面射型發光元件的方法”,中華民國專利發明第I 563756號,自2016年12月21日至2034年12月23日。專利所有權人: 國立台灣科技大學。
[23] S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, “Thermal Annealing Effects on P-Type Mg-Doped GaN Films,” Japanese Journal of Applied Physics, vol. 31, pp. L139-L142, Feb. 1992.
[24] H. Jiang, T. Egawa, H. Ishikawa, “AlGaN Solar-Blind Schottky Photodiodes Fabricated on 4H-SiC,” IEEE Photon. Technol. Lett., vol. 18, no. 12, Jun. 2006.
[25] J. P. Shim, S. R. Jeon, Y. K. Jeong, D. S. Lee, ”Improved Efficiency by Using Transparent Contact Layers in InGaN-Based p-i-n Solar Cells,” IEE Electron Device Lett., vol. 31, no. 10, Oct. 2010.

[26] 林明勳, “自動畫處空面板製造品值預測模式之研究”, 國立中山大學資訊管理學系碩士論文, 高雄, 2013。
[27] 施敏,半導體元件物理與製作技術,國立交通大學出版社,2002。
[28] 甯榮椿,「使用感應耦合店將反應式離子蝕刻系統蝕刻氮化矽與氮化鈦:選擇比研究SC1溶液對氮化鈦濕蝕刻速率研究」,國立清華大學材料科學與工程學系碩士學位論文,新竹,2010。
[29] 王婉瑄, “以奈米壓印微影技術研製氮化鎵分佈回饋式雷射”, 國立台灣科技大學電子工程所碩士論文, 台北, 2015。
[30] 林士淵,「電漿輔助化學氣相沉積二氧化矽薄膜之內應力分析」,國立成功大學機械工程學系碩士論文,台南,2000。
[31] 廖彥超, “有無電流阻擋層與不同透明導電層材料與厚度對氮化鎵發光二極體電流分佈的影響”, 國立台灣科技大學電子工程所碩士論文, 台北, 2011。
[32] 邱彥傑, “氮化鎵異質接面光電晶體的響應速度與光電特性量測”, 國立台灣科技大學電子工程所碩士論文, 台北, 2017。

QR CODE