簡易檢索 / 詳目顯示

研究生: 陳建宏
Chien-Hung Chen
論文名稱: 應用人工智慧於隱形眼鏡殼模射出成形參數多目標最佳化之研究
Research on Artificial Intelligence in Multi-objective Optimization for Injection Molding Parameters of Contact Lens Shell Molds
指導教授: 陳炤彰
Chao-Chang A. Chen
口試委員: 楊申語
Sen-Yeu Yang
劉士榮
Shih-Jung Liu
黃明賢
Ming-Shyan Huang
莊程媐
Cheng-Hsi Chuang
陳炤彰
Chao-Chang A. Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 172
中文關鍵詞: 隱形眼鏡殼模射出成形類神經網路多目標基因演算法模擬退火演算法基因演算法最佳化類神經網路
外文關鍵詞: Contact Lens Shell Mold, Injection Molding, Neural Network, Multi objective Genetic Algorithm, Simulated Annealing Algorithm, Genetic Algorithm-Artificial Neural Network (GA-ANN)
相關次數: 點閱:292下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用近視400度隱形眼鏡殼模模具,探討隱形眼鏡殼模射出成形參數多目標最佳化之研究。研究目的為應用AI導入射出成形製程,使品質預測模型更為準確並得到最佳射出成形參數,提高產品良率。研究方法影響因子為射速、保壓壓力、保壓時間、模溫、融膠溫度、冷卻時間,品質特性為同時滿足最小Z軸翹曲與最小成形週期時間,比較田口法、期望函數、多目標基因演算法、模擬退火演算法。實驗結果,多目標基因演算法,可得到同時滿足最小Z軸翹曲16.080 mm*10-2與最小成形週期時間28.476 sec。本研究使用非接觸型的量測方法,把實際射出隱形眼鏡殼模尺寸與標準模仁外形尺寸比較的方法,與先前研究,使用模擬數據或是使用接觸型的量測方法進行尺寸補償明顯不同。量測濕片度數結果,田口法最佳化參數製作之隱形眼鏡鏡片為近視425度,期望函數為近視450度,多目標基因演算法、模擬退火演算法為近視425度。本研究使用類神經網路建立品質預測模型,並運用基因演算法最佳化類神經網路GA-ANN。另本研究自行撰寫MATLAB類神經網路程式,根據輸入,輸出項目與資料的多寡,使用MSE均方誤差值之大小判斷,自動得到最佳隱藏層與神經元之數量,達到最快收斂結果,也避免過擬合。
    關鍵字:隱形眼鏡殼模、射出成形、類神經網路、多目標基因演算法、模擬退火演算法、基因演算法最佳化類神經網路


    This research develops a Multi-objective optimization method with the myopia of 400 degrees contact lens shell mold for obtaining the optimized injection parameters of injection molding. This research is to integrate Artificial Intelligence (AI) into the injection molding process to increase the accuracy of the prediction model and obtain the optimal injection molding parameters for improving the product yield rate. Research methods include the Taguchi method, Desirability Function Analysis, Multi-objective Genetic Algorithm (MOGA) and Simulated Annealing (SA) Algorithm. The control factors include Injection Speed, Packing Pressure, Packing Time, Mold Temperature, Melt Temperature and Cooling Time. Experimental result of MOGA achieves the minimum warpage of Z-axis as 16.080 mm*10-2 and the minimum cycle time as 28.476 sec. This research develops a non-contact measurement method to compare with the shell mold dimension and mold core dimension. It is different from previous research of only simulation analysis or using contact measurement method for compensation. The soft contact lens and measurement results are shown that, the contact lens made by Taguchi method is myopia 425 degrees, the Desirability Function Analysis method is 450 degrees, and the MOGA and SA is 425 degrees. This research develops a Neural Network to establish prediction model, with GA to optimize the Neural Network (GA-ANN). The goal of GA-ANN is to achieve a better prediction model and obtain the optimization of injection parameters. Finally, this research develops a MATLAB Neural Network program, based on mean square error value, that can achieve the optimized hidden layer to obtain the fastest convergence and avoid overfitting.
    Keywords: Contact Lens Shell Mold, Injection Molding, Neural Network, Multi objective Genetic Algorithm, Simulated Annealing Algorithm, Genetic Algorithm-Artificial Neural Network (GA-ANN).

    摘要 I Abstract II 致謝 III 目錄 V 圖目錄 IX 表目錄 XIV 第一章 導論 1 1.1 研究動機與背景 1 1.2 研究目的 2 1.3 研究方法 2 1.4 論文架構 3 第二章 文獻回顧 5 2.1 非球面隱形眼鏡文獻回顧 5 2.1.1 非球面誤差補償文獻回顧 5 2.1.2 非球面隱形眼鏡殼模射出成形參數文獻回顧 10 2.2 射出成形參數文獻回顧 13 2.2.1 射出成形論文射出參數影響變形量文獻回顧 13 2.2.2 射出成形論文射出參數影響週期時間文獻回顧 15 2.2.3 綜合影響決定射出參數 17 2.3 田口法文獻回顧 17 2.4 期望函數文獻回顧 19 2.5 迴歸分析文獻回顧 22 2.6 類神經網路文獻回顧 24 2.7 多目標基因演算法文獻回顧 26 2.8 模擬退火演算法文獻回顧 28 2.9 文獻回顧總結 29 第三章 模擬分析與射出成形參數最佳化 31 3.1 模擬數據 31 3.2 模擬數據田口法分析 41 3.3 模擬數據期望函數分析 43 3.4 模擬數據類神經網路分析 45 3.5 模擬數據迴歸模型分析 53 3.6 模擬數據多目標基因演算法分析 57 3.7 模擬數據模擬退火演算法分析 60 3.8 模擬數據GA-ANN最佳化分析 62 第四章 射出成形實驗與AI最佳化 66 4.1 隱形眼鏡製作流程介紹 66 4.2 實驗設備/週邊設備與材料 67 4.2.1 射出成形/週邊設備介紹 67 4.2.2 射出成形實驗模具/模仁/模座 70 4.2.3 射出成形實驗材料 72 4.3 量測設備/量測位置/量測方法 73 4.3.1 翹曲量測設備介紹 73 4.3.2 翹曲量測位置/量測方法 75 4.3.3 濕片量測設備介紹 77 4.4 短射實驗/成形視窗/實驗A B C 78 4.4.1 短射實驗與成形視窗 78 4.4.2 實驗A實際射出成型數據分析/AI結果 80 4.4.3 實驗B驗證實驗/最佳化參數pνT圖 105 4.4.4 實驗C乾片與濕片製作 112 4.5 結果與討論 115 4.5.1 結果 115 4.5.2 討論 119 第五章 結論與建議 120 5.1 結論 120 5.2 建議 122 參考文獻 124 附錄A Soldick GL-30射出機詳細規格 129 附錄B 信易-模具控溫機外形尺寸與詳細規格 130 附錄C 非球面軟式隱形眼鏡殼模模具設計圖 133 附錄D 塑膠材料-福聚PP6331 141 附錄E 表面3D輪廓量測儀KEYENCE VR-5200外形尺寸與詳細規格 143 附錄F 多目標基因演算法程式碼 144 附錄G 模擬退火演算法程式碼 145 附錄H 類神經網路程式碼 146 附錄I GA-ANN程式碼 147 附錄J 汽泡與破片 148 附錄K 反應曲面法影響因子參數範圍比較 149 作者簡介 153

    [1] 陳建銘, "曲線近似法在非球面鏡片射出模仁之形狀誤差分析研究," 碩士, 機械工程系, 國立臺灣科技大學, 台北市, 2003.
    [2] 曾淑玲, "非球面塑膠鏡片收縮誤差補償之研究," 碩士, 機械工程系, 國立臺灣科技大學, 台北市, 2005.
    [3] 楊力權, "光學追跡應用於塑膠非球面鏡片收縮誤差補償分析," 碩士, 機械工程系, 國立臺灣科技大學, 台北市, 2008.
    [4] 邱鈺婷, "非球面軟式隱形眼鏡之殼模射出成形研究," 碩士, 機械工程系, 國立臺灣科技大學, 台北市, 2016.
    [5] 武氏蓮, "NURBS多焦隱形眼鏡設計及殼模射出成形之收縮分析研究," 博士, 機械工程系, 國立臺灣科技大學, 台北市, 2018.
    [6] C.-C. Chen and S.-W. Chang, "Shrinkage Analysis on Convex Shellby Injection Molding," International Polymer Processing, vol. 23, no. 1, pp. 65-71, 2008.
    [7] 史維克, "菲涅爾隱形眼鏡設計與殼模射出成形之 體積收縮分析研究," 碩士, 機械工程系, 國立臺灣科技大學, 台北市, 2020.
    [8] S. Liao, W. Hsieh, J. T. Wang, and Y. Su, "Shrinkage and warpage prediction of injection‐molded thin‐wall parts using artificial neural networks," Polymer Engineering & Science, vol. 44, no. 11, pp. 2029-2040, 2004.
    [9] C. Shen, L. Wang, and Q. Li, "Optimization of injection molding process parameters using combination of artificial neural network and genetic algorithm method," Journal of materials processing technology, vol. 183, no. 2-3, pp. 412-418, 2007.
    [10] M. Altan, "Reducing shrinkage in injection moldings via the Taguchi, ANOVA and neural network methods," Materials & Design, vol. 31, no. 1, pp. 599-604, 2010.
    [11] S. Kitayama and S. Natsume, "Multi-objective optimization of volume shrinkage and clamping force for plastic injection molding via sequential approximate optimization," Simulation Modelling Practice and Theory, vol. 48, pp. 35-44, 2014.
    [12] R. Ramakrishnan and K. Mao, "Minimization of shrinkage in injection molding process of acetal polymer gear using Taguchi DOE optimization and ANOVA method," Int. J. Mech. Ind. Technol., vol. 4, no. 2, pp. 72-79, 2017.
    [13] R. J. Bensingh, R. Machavaram, S. R. Boopathy, and C. Jebaraj, "Injection molding process optimization of a bi-aspheric lens using hybrid artificial neural networks (ANNs) and particle swarm optimization (PSO)," Measurement, vol. 134, pp. 359-374, 2019.
    [14] S. F. Syed, J. C. Chen, and G. Guo, "Optimization of tensile strength and shrinkage of talc-filled polypropylene as a packaging material in injection molding," Journal of Packaging Technology and Research, vol. 4, no. 1, pp. 69-78, 2020.
    [15] J. Heinisch, Y. Lockner, and C. Hopmann, "Comparison of design of experiment methods for modeling injection molding experiments using artificial neural networks," Journal of Manufacturing Processes, vol. 61, pp. 357-368, 2020.
    [16] O. Kayabasi, "Optimization of plastic injection process using optimization techniques," Journal of Engineering Research and Applied Science, vol. 9, no. 1, pp. 1366-1373, 2020.
    [17] S. Kitayama, M. Yokoyama, M. Takano, and S. Aiba, "Multi-objective optimization of variable packing pressure profile and process parameters in plastic injection molding for minimizing warpage and cycle time," The International Journal of Advanced Manufacturing Technology, vol. 92, no. 9-12, pp. 3991-3999, 2017.
    [18] S. Kitayama, Y. Yamazaki, M. Takano, and S. Aiba, "Numerical and experimental investigation of process parameters optimization in plastic injection molding using multi-criteria decision making," Simulation Modelling Practice and Theory, vol. 85, pp. 95-105, 2018.
    [19] 丹尼Denni, "運用田口方法、倒傳遞類神經網路、基因演算法及混合粒子群演算法與基因演算法於塑膠射出成形最佳化系統之研究," 博士, 科技管理博士學位學程, 中華大學, 新竹市, 2014.
    [20] Y. Ryu, J. S. Sohn, C.-S. Yun, and S. W. Cha, "Shrinkage and Warpage Minimization of Glass-Fiber-Reinforced Polyamide 6 Parts by Microcellular Foam Injection Molding," Polymers, vol. 12, no. 4, p. 889, 2020.
    [21] J. Sreedharan, A. Jeevanantham, and A. Rajeshkannan, "Multi-objective optimization for multi-stage sequential plastic injection molding with plating process using RSM and PCA-based weighted-GRA," Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 234, no. 5, pp. 1014-1030, 2020.
    [22] 吳昇達, "混合物最佳配方之研究:以舒腦膠囊為例," 碩士, 工業管理研究所, 南台科技大學, 台南市, 2007.
    [23] 黃騰毅, "應用資料探勘技術解決多品質混合參數實驗問題," 碩士, 商學研究所, 國立臺北商業技術學院, 台北市, 2008.
    [24] D. Devarajaiah and C. Muthumari, "Evaluation of power consumption and MRR in WEDM of Ti–6Al–4V alloy and its simultaneous optimization for sustainable production," Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 40, no. 8, p. 400, 2018.
    [25] G. Derringer and R. Suich, "Simultaneous optimization of several response variables," Journal of quality technology, vol. 12, no. 4, pp. 214-219, 1980.
    [26] Q. M. U. Jan, T. Habib, S. Noor, M. Abas, S. Azim, and Q. M. Yaseen, "Multi response optimization of injection moulding process parameters of polystyrene and polypropylene to minimize surface roughness and shrinkage’s using integrated approach of S/N ratio and composite desirability function," Cogent Engineering, vol. 7, no. 1, p. 1781424, 2020.
    [27] 黃靖雅, "以複迴歸分析結合資料包絡法最佳化射出成形作業之翹曲、收縮與頂出時體積收縮比," 碩士, 工業工程與經營資訊學系, 東海大學, 台中市, 2010.
    [28] 劉朋熹, "運用混合演算法於塑膠射出成形製程參數最佳化系統之研究," 博士, 科技管理博士學位學程, 中華大學, 新竹市, 2014.
    [29] J. C. Chen, G. Guo, and W.-N. Wang, "Artificial neural network-based online defect detection system with in-mold temperature and pressure sensors for high precision injection molding," The International Journal of Advanced Manufacturing Technology, vol. 110, no. 7, pp. 2023-2033, 2020.
    [30] B. Ozcelik and T. Erzurumlu, "Comparison of the warpage optimization in the plastic injection molding using ANOVA, neural network model and genetic algorithm," Journal of materials processing technology, vol. 171, no. 3, pp. 437-445, 2006.
    [31] 范揚志, "應用類神經網路與基因演算法於射出成形製程參數最佳化之研究," 碩士, 科技管理研究所, 中華大學, 新竹市, 2006.
    [32] W.-R. Jong, Y.-M. Huang, Y.-Z. Lin, S.-C. Chen, and Y.-W. Chen, "Integrating Taguchi method and artificial neural network to explore machine learning of computer aided engineering," Journal of the Chinese Institute of Engineers, vol. 43, no. 4, pp. 346-356, 2020.
    [33] Z. Song, S. Liu, X. Wang, and Z. Hu, "Optimization and prediction of volume shrinkage and warpage of injection-molded thin-walled parts based on neural network," The International Journal of Advanced Manufacturing Technology, vol. 109, no. 3, pp. 755-769, 2020.
    [34] K.-M. Tsai and H.-J. Luo, "An inverse model for injection molding of optical lens using artificial neural network coupled with genetic algorithm," Journal of Intelligent Manufacturing, vol. 28, no. 2, pp. 473-487, 2017.
    [35] D. Kumar, G. Dangayach, and P. Rao, "An experimental investigation to optimise injection moulding process parameters for plastic parts by using Taguchi method and multi-objective genetic algorithm," International Journal of Process Management and Benchmarking, vol. 9, no. 1, pp. 1-26, 2019.
    [36] Q. Feng, L. Liu, and X. Zhou, "Automated multi-objective optimization for thin-walled plastic products using Taguchi, ANOVA, and hybrid ANN-MOGA," The International Journal of Advanced Manufacturing Technology, vol. 106, no. 1-2, pp. 559-575, 2020.
    [37] 陳姿伶, "應用模擬退火法進行普通蒸餾程序最適啟動研究," 碩士, 化學工程系, 國立臺灣科技大學, 台北市, 2014.
    [38] 周鈞彥, "以模擬退火法實現太陽能最大功率追蹤系統," 碩士, 電機工程系, 國立臺灣科技大學, 台北市, 2015.

    無法下載圖示 全文公開日期 2024/10/12 (校內網路)
    全文公開日期 2024/10/12 (校外網路)
    全文公開日期 2024/10/12 (國家圖書館:臺灣博碩士論文系統)
    QR CODE