簡易檢索 / 詳目顯示

研究生: 張家豪
Chia-Hao Chang
論文名稱: 不同椎弓根骨螺絲強化技術之評估:屍骨測試及數值分析
Evaluations of Pullout Strength for Different Pedicle Screw Augmentation Techniques:Cadaveric Tests and Finite Element Analyses
指導教授: 趙振綱
Ching-Kong Chao
趙國華
Kuo-Hua Chao
口試委員: 徐慶琪
Ching-Chi Hsu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 99
中文關鍵詞: 椎弓根骨螺絲拉出強度骨質疏鬆椎體成形術骨水泥生物力學實驗屍骨測試有限元素法
外文關鍵詞: pedicle screw, pullout strength, osteoporosis, vertebroplasty, bone cement, biomechanical tests, cadaveric tests, finite element method
相關次數: 點閱:243下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 脊椎是人體中最重要的構造之一,當椎體或椎間盤受到損害後,通常需進行脊椎椎體置換手術(Vertebral body replacement),藉由手術將受損椎體或椎間盤移除,取而代之的是人工椎體支撐器(Vertebral body cage),然而單純的植入人工椎體支撐器並無法產生足夠的穩定效果,通常需再加上脊椎內固定器(Spinal fixator),使椎體能在穩定的狀態下產生骨融合,在內固定器裡,椎弓根骨螺絲(Pedicle screw)扮演著內固定器與椎體之間連接的橋樑,內固定器是否穩定,骨螺絲為最重要之因素,然而對於患有骨質疏鬆之病患,單純的鎖入椎弓根骨螺絲並不能提供足夠的穩定,原因來自於病患的骨密度值太低,因此,若能提高骨螺絲與椎體間介面強度,將可達到穩定椎體的效果。椎體成形術(Vertebroplasty)為在脆弱或有骨折之椎體內部注射骨水泥(Bone cement),進而達到強化或修復椎體的一種手術,當骨螺絲植入於椎體內部時,骨螺絲與椎體間介面咬合強度亦會隨著椎體強化進而提升。
    本研究將從生物力學實驗及有限元素法評估三種不同的中空椎弓根骨螺絲植入技術,第一種為單純植入椎弓根骨螺絲,且不使用骨水泥強化(Control),第二種為先使用注射器注入PMMA骨水泥於椎體內部,隨後植入椎弓根骨螺絲(Vertebroplasty),第三種為先植入椎弓根骨螺絲,隨後從骨螺絲頭部使用注射器注入PMMA骨水泥(Vertebroplasty)。在生物力學實驗上,本研究為了使研究結果更加接近臨床情況,因此將採用人類胸腰椎大體試片進行椎弓根骨螺絲拉出實驗。
    研究結果顯示,先將骨水泥注入於椎體內部,再植入椎弓根骨螺絲之植入技術,不管在拉出強度、最大拉出強度的位移量(δps)及總吸收能量上,都擁有最佳的生物力學特性,而數值分析之結果也與實驗結果趨勢一致,因此,本研究建議在患有骨質疏鬆症且需進行椎弓根骨螺絲植入之病患,使用第二種的植入技術是為最有效穩定椎體的手術方法。


    The vertebral column is one of the most important structures in the human body. When the vertebrae body or the intervertebral disc has been damaged, a vertebral body replacement surgery is usually needed. Therefore, through this kinds of surgery, the damaged vertebrae body or intervertebral disc will be removed, and replacing it with the vertebral body cage. However, simply implanting the vertebral body cage could not adjust the stability of the fusion segment, in which, the supplementary pedicle screw fixation has been widely used for increasing rigidity of spinal implant construct, in order to produce the bone fusion under the stabilized motion segment. If the vertebral bodies are affected by osteoporosis, the general pedicle screws are unable to apply enough screw-bone interface strength for osteoporotic bodies, and high risks resulted from loosening or failure of the fixation systems. In this case, if the screw-bone interface strength can be increased, thus, the effect of stability can be facilitated. The vertebroplasty, a kind of surgery which helps facilitate or repair the vertebrae body through injecting bone cement into the weaker or the fracture part of the vertebrae body, is performed. Thus the bone holding power of vertebrae body and the pedicle screw will gradually increase when the pedicle screw is implanted.
    Biomechanical tests and the finite element method will be used and discussed on assessing three different types of implantation of cannulated pedicle screw in this research. The first type is simply implant the pedicle screw into the vertebrae body without using the bone cement for facilitation. In the second experiment, the syringe will be used to inject PMMA bone cement into the vertebrae body first, and then inject the cannulated pedicle screw. The cannulated pedicle screw is implanted first then the PMMA bone cement is injected from the pedicle screw in the third experiment. To make these biomechanical tests more clinical for this research, therefore, the human thoracolumbar specimens are being used to progress in the pedicle screw pull out experiment.
    The result had shown that injecting the PMMA bone cement into the vertebrae body first, then implanting the cannulated pedicle screw, had the best biomechanical performance including the pull out strength, the displacement at maximal strength, and the total energy absorption. Therefore, the best implantation of the pedicle screw for osteoporosis patients will be suggested to use the second type of the implantation for stable vertebrae body surgery.

    中文摘要---------------------------------------------------------I ABSTRACT---------------------------------------------------------II 誌 謝---------------------------------------------------------III 目 錄---------------------------------------------------------IV 圖表索引---------------------------------------------------------VII 第一章 緒論-----------------------------------------------------1 1.1研究動機與目的------------------------------------------------1 1.2脊椎解剖與構造簡介--------------------------------------------6 1.3椎弓根骨螺絲簡介----------------------------------------------9 1.4文獻回顧-----------------------------------------------------10 1.5本文架構-----------------------------------------------------13 第二章 椎弓根骨螺絲拉出強度實驗測試方法------------------------15 2.1研究流程-----------------------------------------------------15 2.2人類大體試片-------------------------------------------------18 2.3椎弓根骨螺絲及骨水泥基本介紹---------------------------------22 2.4測試夾具-----------------------------------------------------24 2.5測試機台-----------------------------------------------------26 2.6測試方法-----------------------------------------------------28 2.7拉伸曲線圖及拉出吸收能量-------------------------------------36 2.8生物統計-----------------------------------------------------38 第三章 椎弓根骨螺絲拉出強度實驗測試結果------------------------39 3.1植入椎弓根骨螺絲之X光圖--------------------------------------39 3.2軸向拉出於大體試片之測試結果---------------------------------42 3.3軸向拉出於大體試片之生物統計結果-----------------------------47 第四章 數值分析驗證—有限元素法--------------------------------54 4.1有限元素法簡介-----------------------------------------------54 4.2有限元素模型建立---------------------------------------------56 4.2.1椎弓根骨螺絲模型-------------------------------------------57 4.2.2脊椎模型---------------------------------------------------58 4.2.3骨水泥模型-------------------------------------------------58 4.3有限元素模型及邊界條件參數設定-------------------------------64 4.4收斂性分析---------------------------------------------------68 4.5靈敏度分析---------------------------------------------------69 4.5.1改變不同後方骨元件長度-------------------------------------69 4.5.2改變不同Type骨密度值---------------------------------------70 4.5.3改變不同Type之皮質骨、後方骨元件及鬆質骨單一骨密度值-------70 4.6收斂性分析結果-----------------------------------------------72 4.7靈敏度分析結果-----------------------------------------------78 4.7.1不同後方骨元件長度-----------------------------------------78 4.7.2不同Type骨密度值-------------------------------------------78 4.7.3不同Type之皮質骨、後方骨元件及鬆質骨骨密度值---------------78 第五章 綜合討論------------------------------------------------83 5.1椎弓根骨螺絲拉出實驗探討-------------------------------------83 5.2有限元素法—數值驗證探討-------------------------------------88 5.3骨螺絲拉出實驗與有限元素法結果探討---------------------------90 第六章 結論與未來展望------------------------------------------94 6.1結論---------------------------------------------------------94 6.2未來展望-----------------------------------------------------95 參考文獻--------------------------------------------------------96 作者簡介--------------------------------------------------------99

    [1]Dougherty, G., "Quantitative CT in the measurement of bone quantity and bone quality for assessing osteoporosis," Medical Engineering & Physics, vol. 18, pp. 557-568, (1996).
    [2]許文賢, "人工椎體支撐器之生物力學分析與機械測試," 國立台灣科技大學機械工程研究所博士論文, (2009).
    [3]范昌源, "前方腰椎椎間骨融合術之椎籠最佳位置與不同後方固定結構之生物力學分析," 國立台灣科技大學機械工程研究所博士論文, (2010).
    [4]Lu, D. C., V. Wang, and D. Chou, "The use of allograft or autograft and expandable titanium cages for the treatment of vertebral osteomyelitis," Neurosurgery, vol. 64, pp. 122-130, (2009).
    [5]Nakase, H., Y. S. Park, H. Kimura, T. Sakaki, and T. Morimoto, "Complications and long-term follow-up results in titanium mesh cage reconstruction after cervical corpectomy," Journal of Spinal Disorders & Techniques, vol. 19, pp. 353-357, (2006).
    [6]Halvorson, T. L., L. A. Kelley, K. A. Thomas, T. S. Whitecloud Iii, and S. D. Cook, "Effects of bone mineral density on pedicle screw fixation," Spine, vol. 19, pp. 2415-2420, 19950308 DCOM- 19950308 (1994).
    [7]Wittenberg, R. H., M. Shea, D. E. Swartz, K. S. Lee, A. A. White Iii, and W. C. Hayes, "Importance of bone mineral density in instrumented spine fusions," Spine, vol. 16, pp. 647-652, 19910905 DCOM- 19910905 (1991).
    [8]Hadjipavlou, A. G., C. L. Nicodemus, F. A. Al-Hamdan, J. W. Simmons, and M. H. Pope, "Correlation of bone equivalent mineral density to pull-out resistance of triangulated pedicle screw construct," Journal of Spinal Disorders, vol. 10, pp. 12-19, (1997).
    [9]徐慶琪, "骨螺絲之結構設計與生物力學分析," 國立台灣科技大學機械工程研究所博士論文, (2005).
    [10]Hsu, C. C., C. K. Chao, J. L. Wang, S. M. Hou, Y. T. Tsai, and J. Lin, "Increase of pullout strength of spinal pedicle screws with conical core: biomechanical tests and finite element analyses," Journal of Orthopaedic Research, vol. 23, pp. 788-794, (2005).
    [11]Gardner, M. j., M. h. Griffith, D. Demetrakopoulos, R. h. Brophy, A. Grose, D. l. Helfet, and D. G. Lorich, "Hybrid locked plating of osteoporotic fractures of the humerus," Journal of Bone and Joint Surgery - Series A, vol. 88, pp. 1962-1967, (2006).
    [12]Yanez, A., J. A. Carta, and G. Garces, "Biomechanical evaluation of a new system to improve screw fixation in osteoporotic bones," Medical Engineering & Physics, vol. 32, pp. 532-541, (2010).
    [13]Wetzel, F. T., M. Brustein, F. M. Phillips, and S. Trott, "Hardware failure in an unconstrained lumbar pedicle screw system. A 2-year follow-up study," Spine, vol. 24, pp. 1138-1143, (1999).
    [14]台北榮民總醫院. http://homepage.vghtpe.gov.tw/~rad/VP/VPnew.htm.
    [15]Heini, P. F., "The current treatment--a survey of osteoporotic fracture treatment. osteoporotic spine fractures: the spine surgeon's perspective," Osteoporos International, vol. 16, pp. 85-92, (2005).
    [16]Frankel, B. M., S. D’AGOSTINO, and C. Wang, "A biomechanical cadaveric analysis of polymethylmethacrylate-augmented pedicle screw fixation," Journal of Neurosurgery Spine, vol. 7, pp. 47-53, (2007).
    [17]Becker, S., A. Chavanne, R. Spitaler, K. Kropik, N. Aigner, M. Ogon, and H. Redl, "Assessment of different screw augmentation techniques and screw designs in osteoporotic spines," European Spine Journal, vol. 17, pp. 1462-1469, (2008).
    [18]Chang, M. C., C. L. Liu, and T. H. Chen, "Polymethylmethacrylate augmentation of pedicle screw for osteoporotic spinal surgery: A novel technique," Spine, vol. 33, (2008).
    [19]人體剖面視圖. http://en.wikipedia.org/wiki/Sagittal_plane.
    [20]游祥明、宋晏仁、古宏海、傅毓秀、林光華, 解剖學 二版: 華杏出版股份有限公司, (2005).
    [21]張曦, 骨折、脫位防治和食療100法: 聯廣圖書股份有限公司, (1999).
    [22]Frankel, B. M., T. Jones, and C. Wang, "Segmental polymethylmethacrylate-augmented pedicle screw fixation in patients with bone softening caused by osteoporosis and metastatic tumor involvement: a clinical evaluation," Neurosurgery, vol. 61, pp. 531-537, (2007).
    [23]Kim, H. S., S. K. Park, H. Joy, J. K. Ryu, S. W. Kim, and C. I. Ju, "Bone cement augmentation of short segment fixation for unstable burst fracture in severe osteoporosis," The Korean Neurosurgical Society, pp. 8-14, (2008).
    [24]Chen, L. H., C. L. Tai, P. L. Lai, D. M. Lee, T. T. Tsai, T. S. Fu, C. C. Niu, and W. J. Chen, "Pullout strength for cannulated pedicle screws with bone cement augmentation in severely osteoporotic bone: influences of radial hole and pilot hole tapping," Clinical Biomechanics, vol. 24, pp. 613-618, (2009).
    [25]PMMA骨水泥公司. http://www.medsurplusonline.com/.
    [26]郭寶錚、陳玉敏, 生物統計學: 五南圖書出版股份有限公司, (2010).
    [27]楊惠齡、林明德, 生物統計學 第七版: 新文京開發出版股份有限公司, (2009).
    [28]康淵、陳信吉, ANSYS 入門 五版: 全華圖書股份有限公司, (2007).
    [29]Zhang, L., G. Yang, L. Wu, and Y. B., "The biomechanical effects of osteoporosis vertebral augmentation with cancellous bone granules or bone cement on treated and adjacent non-treated vertebral bodies: a finite element evaluation," Clinical Biomechanics, vol. 25, pp. 166-172, (2010).
    [30]Ha, S. K., "Finite element modeling of multi-level cervical spinal segments (C3–C6) and biomechanical analysis of an elastomer-type prosthetic disc," Medical Engineering & Physics, vol. 28, pp. 534-541, (2006).
    [31]Kurutz, M. and L. Oroszva’ ry, "Finite element analysis of weightbath hydrotraction treatment of degenerated lumbar spine segments in elastic phase," Journal of Biomechanics, vol. 43, pp. 433-441, (2010).
    [32]Goel, V. K., A. Mehta, J. Jangra, A. Faizan, A. Kiapour, R. W. Hoy, and A. R. Fauth, "Anatomic facet replacement system (AFRS) restoration of lumbar segment mechanics to intact: a finite element study and in vitro cadaver investigation," SAS Journal, vol. 1, pp. 46-54, (2007).
    [33]Akamaru, T., N. Kawahara, J. Sakamoto, A. Yoshida, H. Murakami, T. Hato, S. Awamori, J. Oda, and K. Tomita, "The transmission of stress to grafted bone inside a titanium mesh cage used in anterior column reconstruction after total spondylectomy: a finite-element analysis," Spine, vol. 30, pp. 2783-2787, (2005).

    QR CODE