簡易檢索 / 詳目顯示

研究生: 謝陞緯
Shien-Wei Hsieh
論文名稱: 鋼珠撞擊電源供應器外殼之破壞評估
Failure evaluation on the shell of the power supply from ball impact
指導教授: 趙振綱
Ching-Kong Chao
黃育熙
Yu-Hsi Huang
口試委員: 趙振綱
Ching-Kong Chao
黃育熙
Yu-Hsi Huang
徐慶琪
Ching-Chi Hsu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 97
中文關鍵詞: 有限元素法破壞評估臨界應變能密度球擊測試球擊模擬
外文關鍵詞: Finite element method, Failure evaluation, Critical strain energy density, Ball impact test, Ball impact finite element analysis
相關次數: 點閱:157下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要探討電源供應器外殼使用鋼球進行球擊測試,並使用有限元素法模擬軟體(ABAQUS)進行球擊模擬的研究,利用顯示分析(Explicit)方法建立球擊模擬的模型進行電源供應器外殼的破壞評估。由於要在球擊模擬裡直接分析獲得破壞的現象非常困難,本研究使用能量的方法判斷電源供應器外殼是否達到破壞配合電源供應器外殼材料拉伸試驗數據,分析外殼材料所能承受的臨界應變能密度。利用拉伸試驗模擬材料破壞所累積的應變能密度值配合臨界應變能密度驗證有限元素法模擬軟體破壞機制的準則,再把結果應用在正面球擊模擬。使用0.5公斤鋼球進行正面球擊模擬,評估在5到6公尺之間是否會發生破壞;使用1公斤鋼球進行正面球擊模擬,評估在2.5到3公尺之間是否會發生破壞。正面球擊實驗由於實驗設備的限制,無法在2公尺高度以上進行外殼球擊實驗,因此決定把電源供應器外殼轉至側面進行球擊測試並加上經過超音波熔接的底座進行側面球擊實驗。進行模擬與實驗的比較後,評估側面球擊模擬需要把臨界應變能密度除2來做為破壞臨界值。最後再比較正面球擊模擬與側面球擊模擬結果,分析電源供應器外殼在不同邊界條件下的結構強度。


    This study aims to conduct the ball impact test of the power supply shell and uses the ABAQUS finite element analysis (FEA) software to research on ball impact simulation. The failure of the power supply shell is evaluated based on explicit method in ABAQUS for ball impact. Since it is very difficult to directly simulate the failure in the ball impact, the energy method is adopted to evaluate material failure of the power supply shell in this study. Using the shell material tensile test data, the critical strain energy density of the power supply shell material is then determined. Results of the tensile test simulation are used to verify FEA results based on the energy analysis for the ball impact. Using a 0.5 kg steel ball for the frontal ball impact, failure is found to occur between 5 and 6 meters; using a 1 kg steel ball for the frontal ball impact, failure is found to occur between 2.5 and 3 meters. Since the ball impact test cannot exceed 2-meter height due to the limit of the experimental equipment, we decide to turn the power supply shell to the side by adding a base which has been welded on shell bottom by ultrasonic welding. After comparing the simulation results and experimental results for the side ball impact, the critical strain energy density is determined to reduce by half as the failure critical value. Finally, the results of the front ball impact and the side ball impact are compared and the structural strength of the power supply shell under different boundary conditions is also evaluated.

    中文摘要 I ABSTRACT II 致謝 III 目錄 IV 圖目錄 VII 表目錄 XII 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻回顧 1 1.3 研究規劃 3 第二章 模擬軟體基礎介紹與材料參數 6 2.1 ABQUS軟體簡介 6 2.2 顯示動力學基礎理論 6 2.3 外殼材料參數 8 2.4 材料應力應變曲線擬合 11 2.5 超音波熔接 13 第三章 拉伸試驗模擬分析 14 3.1 幾何模型設定 14 3.2 材料參數設定 15 3.2.1 材料破壞參數設定 15 3.3 網格設定 20 3.4 邊界條件設定 21 3.5 能量分析方法 21 3.5.1 塑性消散 22 3.5.2 應變能密度 23 3.6 拉伸試驗模擬分析結果與結論 24 第四章 正面球擊模擬分析與實驗 27 4.1 正面中心球擊模擬設定 27 4.1.1 幾何模型設定 27 4.1.2 材料參數設定 27 4.1.3 網格設定 28 4.1.4 網格收斂性分析 28 4.1.5 邊界條件設定 28 4.2 正面中心球擊模擬能量分析 34 4.2.1 能量累積時間區間計算 34 4.2.2 應變能密度計算 34 4.2.3 正面中心球擊模擬能量分析結果 35 4.3 正面偏心球擊模擬能量分析 48 4.3.1 幾何模型設定 48 4.3.2 正面偏心球擊模擬能量分析結果 48 4.4 正面球擊接觸時間實驗 58 4.4.1 電流法原理 58 4.4.2 正面球擊實驗架設 58 4.5 正面球擊實驗結果與模擬比較 61 第五章 側面球擊實驗與模擬分析 67 5.1 側面球擊實驗架設 68 5.2 側面球擊實驗結果 69 5.3 側面球擊模擬設定 71 5.3.1 幾何模型設定 71 5.3.2 材料參數設定 71 5.3.3 網格設定 72 5.3.4 邊界條件設定 72 5.4 側面球擊模擬能量分析結果 77 第六章 球擊模擬結果比較與破壞評估 90 6.1 正面與側面球擊模擬比較 90 6.2 安全係數與破壞評估 91 第七章 結論與未來展望 92 7.1 結論 92 7.2 未來展望 93 參考文獻 94 附錄 97

    [1]Yau, Y. H., & Hua, S. N. (2011). A comprehensive review of drop impact modeling on portable electronic devices. Applied Mechanics Reviews, 64(2).
    [2]王亮, 顧力強, & 林陳. (2008). 基於 ANSYS/LS-DYNA 的電源適配器外殼耐鋼球撞擊性的分析. 機械, 35(7), 29-31.
    [3]朱以文, & 蔡元奇. (2003). ABAQUS/Standard 有限元軟件入門指南.
    [4]Wu, J., Song, G., Yeh, C. P., & Wyatt, K. (1998, May). Drop/impact simulation and test validation of telecommunication products. In ITherm'98. Sixth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Cat. No. 98CH36208) (pp. 330-336).
    [5]Lim, C. T., & Low, Y. J. (2002). Investigating the drop impact of portable electronic products. In 52nd Electronic Components and Technology Conference 2002.(Cat. No. 02CH37345) (pp. 1270-1274).
    [6]Ren, W., Wang, J., & Reinikainen, T. (2004). Application of ABAQUS/Explicit submodeling technique in drop simulation of system assembly. In Proceedings of 6th Electronics Packaging Technology Conference (EPTC 2004)(IEEE Cat. No. 04EX971) (pp. 541-546).
    [7]Yau, Y. H., Hua, S. N., & Kok, C. K. (2018). Structural failure analysis of polycarbonate enclosures of electronic devices subjected to multiple ball impacts. Polymer Testing, 65, 374-386.
    [8]Khalili, S. M. R., Soroush, M., Davar, A., & Rahmani, O. (2011). Finite element modeling of low-velocity impact on laminated composite plates and cylindrical shells. Composite Structures, 93(5), 1363-1375.
    [9]Wang, X., Ma, B., Gan, Z., & Zhang, H. (2005). Drop test and simulation of portable electronic devices. In 2005 6th International Conference on Electronic Packaging Technology (pp. 1-4).
    [10]Tan, L. B., Ang, C. W., Lim, C. T., Tan, V. B. C., & Zhang, X. (2005). Modal and impact analysis of modern portable electronic products. In Proceedings Electronic Components and Technology, 2005. ECTC'05. (pp. 645-653).
    [11]范儀君(2021)。透過撞擊測試改良電源供應器結構與評估。﹝碩士論文。國立臺灣科技大學﹞臺灣博碩士論文知識加值系統。
    [12]謝昊儒(2021)。鋼珠撞擊於結構系統上之波源歷時量測開發。﹝碩士論文。國立臺灣大學﹞臺灣博碩士論文知識加值系統。
    [13]Chuang, K. C., Huang, K. C., Liou, H. C., & Ma, C. C. (2015). Investigation of transient behavior of a cantilever plate based on elastic impact loading history detection using polyvinylidene fluoride film sensors. IEEE Sensors Journal, 16(6), 1565-1574.
    [14]Parsons, E., Boyce, M. C., & Parks, D. M. (2004). An experimental investigation of the large-strain tensile behavior of neat and rubber-toughened polycarbonate. Polymer, 45(8), 2665-2684.
    [15]Lu, J., & Ravi-Chandar, K. (1999). Inelastic deformation and localization in polycarbonate under tension. International Journal of Solids and Structures, 36(3), 391-425.
    [16]Robert A. Shanks, I. Martinez-Pardo (2016). Polycarbonate stress-strain mechanical analysis with polarised light visualization, video data-set, School of Science RMIT University, Melbourne, Australia.
    [17]Hibbert, K., Warner, G., Brown, C., Ajide, O., Owolabi, G., & Azimi, A. (2019). The effects of build parameters and strain rate on the mechanical properties of FDM 3D-Printed acrylonitrile Butadiene Styrene. Open Journal of Organic Polymer Materials, 9(01), 1.
    [18]Sokol, H. J. (2018). Comparison Between ISO and ASTM Methods for Polypropylene Injection Molding and Mechanical Testing (Doctoral dissertation, Johns Hopkins University).
    [19]Hillerborg, A., Modéer, M., & Petersson, P. E. (1976). Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement and Concrete Research, 6(6), 773-781.
    [20]Li, Q. M. (2001). Strain energy density failure criterion. International Journal of Solids and Structures, 38(38-39), 6997-7013.
    [21]Yang, H., Sinha, S. K., Feng, Y., McCallen, D. B., & Jeremić, B. (2018). Energy dissipation analysis of elastic–plastic materials. Computer Methods in Applied Mechanics and Engineering, 331, 309-326.
    [22]Raju, K. N. (1969). On the calculation of plastic energy dissipation rate during stable crack growth. International Journal of Fracture Mechanics, 5(2), 101-112.
    [23]Omnexus tensile strength of materials typical stress-strain curve
    https://omnexus.specialchem.com/polymer-properties/properties/strength-at-break-tensile
    [24]ABAQUS damage evolution and element removal for ductile metals
    https://abaqus-docs.mit.edu/2017/English/SIMACAEMATRefMap/simamat-c-damageevolductile.htm#simamat-c-damageevolductile-t-bibliography-c1

    QR CODE