簡易檢索 / 詳目顯示

研究生: 許柏翰
Po-Han Hsu
論文名稱: 旋轉式壓電振動能量擷取系統以磁電彈之分析與量測
Magneto-Electro-Elastic Analysis and Measurement of Piezoceramic Energy Harvesting System Applied on Rotary Mechanism
指導教授: 黃育熙
Yu-Hsi Huang
口試委員: 郭進星
Chin-Hsing Kuo
蘇偉儁
Wei-Jiun Su
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 199
中文關鍵詞: 壓電陶瓷雙晶片共振頻率磁力電子斑點干涉術雷射都卜勒振動儀雷射位移計有限元素法能量擷取系統旋轉機構
外文關鍵詞: Piezoceramic bimorph, Energy harvester, Resonant frequency, Magnetic force, ESPI, LDV, Laser Displacement Sensor, FEM, Rotary mechanism
相關次數: 點閱:242下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究將壓電陶瓷雙晶片發電設計概念應用於旋轉機構上。主要探討壓電陶瓷雙晶片於單邊固定且末端放置不同質量磁鐵負載之振動特性,以及壓電陶瓷材料末端磁鐵受磁斥力激振之機電轉換特性,透過理論分析、有限元素數值計算及多種不同的實驗量測技術相互驗證,設計壓電能量擷取系統於旋轉機構透過週期式磁力激振在共振頻率下有良好的發電效果。
    本研究使用全域式電子斑點干涉術(Electronic Speckle Pattern Interferometry, ESPI)、雷射都卜勒振動儀 (Laser Doppler Vibrometer, LDV)量測壓電陶瓷雙晶片的振動特性,以及使用雷射位移計(Laser Displacement Sensor)透過樑變形實驗量測磁力,並將以上實驗結果與理論解析、有限元素數值計算比較,此外,也利用有限元素數值計算方法分析壓電懸臂樑受動態磁斥力之動態響應。最後,經由實驗量測壓電能量擷取系統之發電效應,並證實壓電能量擷取系統於旋轉機構的應用性。本研究成果呈現壓電材料的動態特性於實驗量測、理論分析、數值計算有相當的一致性,並提供對於壓電能量擷取系統應用於旋轉機構的振動特性、發電頻域的分析設計方法。


    The dynamic characteristics of piezoelectric energy harvesting systems for rotary mechanism are investigated in this study. The vibration of piezoceramic bimorphs are excited by rotary mechanism compounded with magnet, in order to stimulate on resonant frequency of piezoelectric device generating on maximum power of energy harvester. The dynamic characteristics and electromechanical coupling efficiency of piezoelectric energy harvesting systems are studied in experimental measurements and finite element method (FEM). Based on series connection of multi-piezoelectric vibrators, the electrical energy have good output under the width range of rotational speed.
    In experimental techniques, including amplitude fluctuation – electronic speckle pattern interferometry (AF-ESPI) and laser Doppler vibrometer (LDV), are used to obtain the vibration characteristics of piezoelectric bimorph cantilever model. Also, laser displacement sensor is used to measure magnetic force through inverse calculation from the deflection of cantilever beam. Resonant frequency and mode shape of piezoelectric bimorph under various mass loads are analyzed by FEM and theoretical analysis. The dynamic response of magnetic excitation is also calculated by FEM for piezoelectric bimorph. The experimental results are compared with the FEM and theoretical analysis. The vibration characteristics of piezoelectric bimorph cantilever have excellent consistence between theoretical solutions, FEM and experimental measurements in direct and converse piezoelectric effects. Finally, the energy harvesting systems are excited to generate electric voltage using by rotary mechanism. It provides completely on the vibration characteristics and electromechanical coupling efficiency of piezoelectric energy harvesting systems applied for rotary mechanism.

    中文摘要 I Abstract II 誌謝 IV 目錄 V 圖目錄 VIII 表目錄 XVII 符號引所 XIX 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 2 1.3 內容介紹 7 第二章 壓電基本理論與實驗儀器介紹 9 2.1 壓電基本理論 9 2.2 壓電材料常數 12 2.3 電子斑點干涉術 14 2.4 雷射都卜勒振動儀 21 2.5 阻抗分析儀 24 2.6 雷射位移計 28 2.7 振動器 32 2.8 光功率計 33 第三章 壓電懸臂樑模型、磁力模型與實驗設計 34 3.1 壓電懸臂樑模型 34 3.1.1 壓電懸臂樑力學模型 36 3.1.2 壓電懸臂樑電學模型 42 3.2 磁力計算模型 44 3.3 實驗設計 46 3.3.1 旋轉機構設計 46 3.3.2 磁力實驗量測 60 第四章 壓電雙晶片逆壓電效應之振動特性分析 68 4.1 壓電陶瓷雙晶片規格 68 4.2 有限元素數值分析 72 4.2.1 模型建立 73 4.2.2 材料參數 74 4.2.3 分析設定與邊界設定 74 4.2.4 網格劃分以及元素材料選用 76 4.3 實驗方法與量測步驟 78 4.4 實驗量測與數值計算結果比較 82 4.4.1 壓電陶瓷雙晶片單邊固定末端無負載 82 4.4.2 末端質量負載之位置探討 88 4.4.3 壓電陶瓷雙晶片單邊固定末端磁鐵負載 90 4.5 討論 111 第五章 磁力分析與壓電懸臂樑動態分析 113 5.1 靜態磁力數值分析 113 5.1.1 三維模型建立 114 5.1.2 材料性質設定 115 5.1.3 邊界條件與激發條件設定 116 5.1.4 網格劃分與設定求解選項 116 5.1.5 靜磁力分析結果與實驗量測結果比較 117 5.2 動態磁力數值分析 121 5.2.1 三維模型建立與材料性質設定 122 5.2.2 邊界、激發條件設定與網格劃分 123 5.2.3 運動設定與求解選項設定 123 5.2.4 動磁力分析結果 124 5.3 壓電懸臂樑動態分析 130 5.3.1 模型建立與材料參數 130 5.3.2 載荷設定與邊界條件 131 5.3.3 網格劃分以及元素材料選用 132 5.3.4 壓電懸臂樑末端受動態磁力激振之動態響應 133 5.4 討論 139 第六章 壓電雙晶片正壓電效應於能量擷取系統應用 140 6.1 壓電懸臂樑之阻尼比與阻抗值實驗量測 140 6.1.1 阻尼比量測 140 6.1.2 阻抗值量測 149 6.2 壓電雙晶片之機電轉換量測與理論計算比較 156 6.2.1 磁鐵中心距25mm之電壓掃頻量測結果與阻尼比擬合 157 6.2.2 磁鐵中心距20mm之電壓掃頻量測結果與理論解比較 167 6.3 壓電能量擷取系統應用於旋轉機構 174 6.3.1 整流電路設計 174 6.3.2 壓電能量擷取系統應用設計 178 6.3.3 壓電懸臂樑於旋轉機構之機電轉換效能量測 182 6.4 討論 192 第七章 結論與未來展望 193 7.1 結論 193 7.2未來展望 195 參考文獻 196

    [1] Curie J., and Curie P., “Development by Pressure of Polar Electricity in Hemihedral Crystals with Inclined Faces,” Bull. Soc. Min de France, 3, pp. 90-102, 1880.
    [2] “陶瓷技術手冊” ,經濟部技術處發行,中華民國產業科技發展協會與中華民國粉末冶金協會出版(1994/07)
    [3] Tiersten, H.F., Linear Piezoelectric Plate Vibrations. New York: Plenum, 1969.
    [4] IEEE standard on piezoelectricity. IEEE Ultrasonics Ferroelectrics and Frequency Control Society, ANSI/IEEE Std 176-1987.
    [5] Heywang W., Lubitz K. and Wersing W., Piezoelectricity-evolution and future of a technology. Springer, 2008
    [6] Benjeddou A. Advance in Piezoelectric Finite Modeling of adaptive structural Elements: A Survey. Computer & Structures 76(2000)347-363.
    [7] Carlos De Marqui Junior, Alper Erturk, Daniel J. Inman. An Electromechanical Finite Element Model For Piezoelectric Energy Harvester Plates. Journal of Sound and Vibration 327 (2009) 9–25.
    [8] Behjat B., Salehi M., Sadighi M. Armin A. and Abbasi M., Static, Dynamic, and Free Vibration Analysis of Functionally Graded Piezoelectric Panels Using Finite Element Method. Journal of Intelligent Material Systems and Structures, Vol. 20, p 1635-1646, 2009.
    [9] Zhu M.,Worthington E.and Njuguna J.. Analyses of Power Output of Piezoelectric Energy-Harvesting Devices Directly Connected to A Load Resistor Using a Coupled Piezoelectric-Circuit Finite Element Method. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 56, No. 7, p 1309-1318, 2009.
    [10] Butters J.N. and Leendertz J.A., “Speckle pattern and holographic techniques in engineering metrology,” Optics and Laser Technology, 3(1), pp. 26-30, 1971.
    [11] Hgmoen K. and Lkberg O.J., “Detection and measurement of small vibrations using electronic speckle pattern interferometry,” Applied Optics, 16(7), pp. 1869-1875, 1977.
    [12] Wykes C., “Use of electronic speckle pattern interferometry/ESPI/ in the measurement of static and dynamic surface displacements,” Optical Engineering, 21, pp.400-406, 1982.
    [13] Nakadate S., Saito H. and Nakajima T., “Vibration measurement using phase-shifting stroboscopic holographic interferometry,” Journal of Modern Optics, 33(10), pp. 1295-1309, 1986.
    [14] Wang W.C., Hwang C.H. and Lin S.Y., “Vibration measurement by the time-averaged electronic speckle pattern interferometry methods,” Applied Optics, 35,(22), pp.4502-4509, 1996
    [15] Ma C.C. and Huang C.H., “Experimental and numerical analysis of vibrating cracked plates at resonant frequencies,” Experimental Mechanics, 41(1), pp.8-18, 2001.
    [16] Ma C.C. and Huang C.H., “Experimental full field investigations of resonant vibrations for piezoceramic plates by an optical interferometry method,” Experimental Mechanics, 42(2), pp.140-146, 2002.
    [17] 黃育熙,馬劍清,「壓電陶瓷平板、薄殼、與雙晶片三維耦合動態特性之實驗量測、數值計算、與理論解析」,國立台灣大學機械工程研究所博士論文,2009年。
    [18] Lee, C.K. and Wu, G.Y., “High performance doppler interferometer for advanced optical storage systems,” Japanese Journal of Applied Physics, 38(3B), pp. 1730-1741, 1999.
    [19] Ma C.C., Lin H.Y., Lin Y.C. and Huang Y.H., “Experimental and numerical investigations on resonant characteristics of a single-layer piezoceramic plate and a cross-ply piezolaminates composite plate,” Journal of the Acoustical Society of America, 119(3), pp.1476-1486, 2006.
    [20] Akoun J. P. and Yonnet G., “3D analytical calculation of the forces exerced between two cuboidal magnets”, IEEE Transactions and Magnetics, vol. 20, no. 5, pp. 1962-1964, 1984.
    [21] 孫其嘉,「電腦輔助磁場分析」,國立台灣師範大學工業教育研究所碩士論文,2004年。
    [22] 楊耀民,「永磁式發電機磁通量及散熱效率改進之研究」,國立交通大學機械工程研究所碩士論文,2010年。
    [23] Henry A. Sodano, Daniel J. Inman and Gyuhae Park, “Comparison of Piezoelectric Energy Harvesting Devices for Recharging Batteries,” Journal of Intelligent Material Systems and Structures, 2005.
    [24] Noaman Makki, Remon Pop-Iliev,Battery-and wire-less tire pressure measurement systems (TPMS) sensor, 2012.
    [25] Gu L, Livermore C. Compact passively self-tuning energy harvesting for rotating applications. Smart Mater Struct 2012.
    [26] Hsu J, Tseng C, Chen Y. Analysis and experiment of self-frequency-tuning
    piezoelectric energy harvesters for rotational motion. Smart Mater Struct
    2014.
    [27] Manla G, White NM, Tudor MJ. Numerical model of a non-contact piezoelectric
    energy harvester for rotating objects. IEEE Sens J 2012;12:1785–93.
    [28] 阚君武、李洋、王淑云、汪彬沈、亚林、李胜杰,「旋轉激勵磁鐵數對壓電俘能器輸出性能的影響」,2014
    [29] 凃哲維、陳義軒、陳凱翔、王柏皓,「旋轉機構之機電整合量測轉速並應用於壓電發電元件之製作與實測」,台灣科技大學機械工程系實務專題報告,指導教授:黃育熙,2016
    [30] Zhou Y.S and Tiersten H.F., “On the normal acceleration sensitivity of contoured quartz resonators with the mode shape displaced with respect to rectangular supports,” Journal of Applied Physics, 69(5), 1991, pp. 2862-2870.
    [31] Royer D., Dieulesaint E. and LyleElastic S.N., “Waves in Solids: Generation, acousto-optic interaction, applications,” Springer, 2000.
    [32] Andrushchenko V.A., Vovkodav I.F., Karlash V.L. and Ulitko A.F., “Coefficient of electromechanical coupling in piezoceramic disks,” International Applied Mechanics, 11(4), 1975, pp. 377-382.
    [33] Erturk A. and Inman D. J., “A Distributed Parameter Electromechanical Model for Cantilevered Piezoelectric Energy Harvesters”, Journal of Vibration and Acoustics, vol. 130, no. 4, p. 1002, 2008.
    [34] Hibbeler, R.C., Mechanics of materials. 3rd edition, Prentice Hall Press,1997.
    [35] 周聖倫,「壓電能量擷取系統以邊界設計方法降低共振頻率之研究」,國立台灣科技大學機械工程研究所碩士論文,2017
    [36] 周宛婷,「電極設計方法應用於壓電陶瓷平板與雙晶片提升振動能量擷取系統效能研究」,國立台灣科技大學機械工程研究所碩士論文,2013

    QR CODE