簡易檢索 / 詳目顯示

研究生: 郭明倫
Ming-lun Kuo
論文名稱: 廢棉織品為原料之高濃度酒精醱酵生產
Very high gravity (VHG) fermentation for ethanol production from waste textiles
指導教授: 李振綱
Cheng-kang Lee
口試委員: 段國仁
Kow-jen Duan
吳誌明
Jyh-ming Wu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 120
中文關鍵詞: 高濃度酒精同步醣化醱酵廢棉織品
外文關鍵詞: Very High Gravity, Simultaneous saccharification and fermentation, waste textile
相關次數: 點閱:194下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高濃度酒精 (Very High Gravity, VHG) 醱酵具有提高酒精產量及減少用水、減少酒精濃縮能源消耗等優點,而棉纖維中含近 100 % 的纖維素可水解成葡萄糖供微生物醱酵生質酒精,因此本論文研究利用廢棉織品為原料進行 VHG 的同步糖化醱酵生產生質酒精。
    廢棉織品首先以 85 % 濃磷酸來溶解做為前處理,破壞廢棉布纖維素的結晶度以增加纖維素酵素 (AccelleraseR 1500) 水解效率。同步糖化醱酵時纖維素一經酵素水解成葡萄糖即被酵母菌 (Saccharomyces cerevisiae, Emulsifier E491) 醱酵成為酒精。在酵母菌添加量為 0.25-0.5 g/L,以 300 g/L 葡萄糖之 YPHD 液態培養液在 35℃ 醱酵 72 小時,酒精濃度可達 16 % (v/v) 以上。經磷酸溶解再生前處理之白色廢棉織品,以饋料方式添加進行同步糖化醱酵,72 小時可達到酒精濃度 85.32 g/L,168 小時可達到酒精濃度 93.49 g/L,酒精收率為每克白色廢棉布可以產生 0.52 克酒精,為理論產率的 93 %。綠色廢棉織品與牛仔褲廢布之醱酵,在 72 小時分別可得 92.78 g/L 及 82.51 g/L 酒精濃度,延長至 168 小時酒精濃度無法更有效地增加,酒精收率分別為每克綠色廢棉織品與牛仔褲廢布能產生 0.36 克及 0.43 克酒精,為理論產率的 64 % 及 77 %,其酒精產率明顯低於白色廢棉布,這是因為染劑附著於棉纖維表面,降低纖維素水解酵素接觸棉纖維進行糖化之能力,不利於生質酒精醱酵。


    The Very High Gravity (VHG) ethanol fermentation involves preparation and fermentation of cellulose mash containing high dissolved solid. It could enhance the ethanol productivity and reduced energy utilization. Moreover, cotton fibers containing 100 % sugar can also be fermented into ethanol. The substrate use for this research is cellulosic waste such as biomass or waste cotton fabrics.
    The waste cotton fabrics was treated by 85 % (w/v) phosphoric acid for dissolution. Phosphoric acid can break cellulosic crystalline domain of cotton that enhances cellulase (AccelleraseR 1500) hydrolysis efficiency. Simultaneous saccharification and fermentation (SSF) process includes cellulose liquefaction, saccharfication, and fermentation by yeast (Saccharomyces cerevisiae, Emulsifier E491). About 0.25-0.5 g/L yeast was employed in SSF process. If YPHD medium were used for fermentation at the 35℃, ethanol concentration of 16 % (v/v) was obtained at 72 hours. Pretreating white cotton fabrics by phosphoric acid dissolution, about 85.32 g/L ethanol was obtained at 72 hours and about 93.49 g/L ethanol was obtained at 168 hours. The ethanol conversion yield is 0.52 g ethanol/g cellulose corresponding to 93 % of the theoretical value. Pretreating green cotton fabrics and blue jeans cotton fabrics by phosphoric acid dissolution, about 92.78 g/L and 82.51 g/L ethanol was obtained at 72 hours and about 94.76 g/L and 90.30 g/L ethanol was obtained at 168 hours. The ethanol conversion yield is 0.36 and 0.43 g ethanol/g cellulose corresponding to 64 % and 77 % of the theoretical value, respectively.

    中文摘要 I Abstract III 誌謝 IV 目錄 V 圖目錄 XI 表目錄 XIV 第一章 緒論 1 1.1 研究背景 1 1.2 研究內容簡介 3 第二章 文獻回顧 4 2.1 木質纖維素 4 2.1.1 纖維素 6 2.1.2 半纖維素 8 2.1.3 木質素 9 2.2 纖維素水解 11 2.2.1 纖維素酶介紹 13 2.2.2 影響纖維素酶水解纖維素因子 15 2.3 水解纖維素菌種 16 2.4 木質纖維素前處理方法 18 2.4.1 機械粉碎 (mechanical smash) 19 2.4.2 蒸氣爆裂法 (steam explosion) 19 2.4.3 高壓熱水處理法 (liquid hot water pretreatments) 20 2.4.4 稀酸前處理 (dilute acid pretreatments) 20 2.4.5 石灰前處理法 (lime pretreatment) 21 2.4.6 氨水前處理法 (ammonia pretreatment) 21 2.4.7 製紙漿 (pulping) 21 2.5 木質纖維素溶解前處理法 24 2.5.1 .N-methyl-morpholine-N-oxide (NMMO) 25 2.5.2 離子溶液 (ionic liquid) 26 2.5.3 濃磷酸 28 2.5.4 鹼液溶解纖維素 30 2.6 纖維素之溶解前處理 30 2.7 生質酒精 32 2.7.1 酵母菌醱酵生產酒精 32 2.7.2 酵母菌 (Saccharomyces cervisiae) 代謝路徑 33 2.7.3 .Very High Gravity (VHG) 酒精醱酵 35 2.7.4 生質酒精製程 36 2.7.5 生質酒精之經濟評估 42 第三章 實驗材料與方法 45 3.1 實驗流程 45 3.2 實驗材料 47 3.2.1 纖維水解酵素 47 3.2.2 酵母菌株 48 3.3 實驗藥品 48 3.4 實驗儀器與設備 49 3.5 實驗方法 51 3.5.1 培養基成分 51 3.5.2 檸檬酸緩衝溶液配置 53 3.5.3 竹筷成屑 (木質纖維素) 之製作 54 3.5.4 前處理實驗方法 54 3.5.5 纖維酵素水解 57 3.5.6 .YPHD 液態培養基培養酵母菌 57 3.5.7 纖維酵素水解液添加量測試 58 3.5.8 白色廢棉布同步糖化醱酵 59 3.5.9 有色廢棉布對同步糖化醱酵之影響 59 3.5.10 木質纖維素同步糖化醱酵 60 3.5.11 酵母菌體生長測試 61 3.6 分析方法 61 3.6.1 .DNS 還原糖測定法 61 3.6.2 蛋白質之濃度分析 (protein assay) 62 3.6.3 濾紙活性 (FPU) 分析 64 3.6.4 組成份分析 64 3.6.5 高效能液相層析 (HPLC) 分析法-糖類及酒精分析 67 3.6.6 水分天秤分析 (Moisture determination balance) 67 3.6.7 .X 光繞射 (XRD)-結晶度分析 67 第四章 結果與討論 68 4.1 蛋白質濃度分析 (protein assay) 68 4.2 濾紙活性 (FPU) 分析 68 4.3 前處理對木質纖維素之酵素水解影響 69 4.3.1 處理前後木質纖維素進行酵素水解之質量平衡 70 4.3.2 磷酸溶解前處理後竹筷屑之含水率 75 4.3.3 磷酸前處理後結晶度之變化 76 4.4 廢棉布溶解再生前處理 78 4.4.1 白色廢棉布 78 4.4.1.1 磷酸溶解前處理後白色廢棉布之含水率 78 4.4.1.2 磷酸溶解前處理後結晶度之變化 79 4.4.2 有色廢棉布 80 4.4.2.1 磷酸溶解前處理後有色廢棉布之含水率 80 4.4.2.2 磷酸溶解前處理後結晶度之變化 82 4.5 .YPHD 液態培養基培養酵母菌 84 4.5.1 醱酵生質酒精 84 4.5.2 酒精醱酵葡萄糖之變化 86 4.5.3 酵母菌體生長測試 87 4.6 水解酵素添加量對白色廢棉布同步糖化醱酵之影響 88 4.6.1 醱酵生質酒精 88 4.6.2 酒精醱酵葡萄糖之變化 90 4.6.3 殘餘白色廢棉布測定 92 4.6.4 酵母菌體生長測試 92 4.7 有色廢棉布對同步糖化醱酵之影響 94 4.7.1 醱酵生質酒精 94 4.7.2 酒精醱酵葡萄糖之變化 97 4.7.3 殘餘綠色廢棉布與牛仔褲廢布測定 98 4.7.4 酵母菌體生長測試 98 4.8 木質纖維素同步糖化醱酵 100 4.8.1 醱酵生質酒精 100 4.8.2 酒精醱酵葡萄糖之變化 102 4.8.3 殘餘竹筷屑測定 103 4.8.4 酵母菌體生長測試 104 第五章 結論與建議 106 5.1 結論 106 5.2 建議 107 參考文獻 109 附錄 116

    郭家宏, 2009. 纖維素之溶解對其酵素醣化及發酵應用之研究。國立
    台灣科技大學化學工程所碩士論文。
    王健家, 2007. 國立中央大學, 生命科學系
    楊思廉, 1992. 第四章 石油化學工業, 工業化學概論, 五洲出版社
    碳經濟 (carbon economy), 2009. 第12期 經濟部能源局
    碳經濟 (carbon economy), 2009. 第14期 經濟部能源局
    Anderson J.L., Ding J., Welton T., Armstrong D.W., 2002. Characterizing ionic liquids on the basis of multiple solvation interactions. Journal of the American Chemical Society, 124:14247 – 14254
    Anna Ebringerova, 2006. Structural diversity and application potential of hemicelluloses. Macromolecular Symposia, 232:1 – 12
    Bai F.W., Anderson W.A., Moo-Young M., 2008. Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnology Advances, 26:89 – 105
    Ballesteros, M., Oliva, J.M., Negro, M.J., Manzanares, P., Ballesteros, I., 2004. Ethanol from lignocellulosic materials by a simultaneous saccharification and fermentation process (SFS) with Kluyveromyces marxianus CECT 10875. Process Biochemistry, 39:1843 – 1848
    Béguin, P. and Aubert, J.P. 1992. La dégradation de la cellulose par les microorganismes. Annales de l’Institut Pasteur/Actualités, 3:91 – 115
    Boopathy, R., 1998. Biological treatment of swine waste using anaerobic baffled reactors. Bioresource Technology, 64:1 – 6
    Buranov A.U., Mazza G., 2008. Lignin in straw of herbaceous crops. Industrial Crops and Products, 28:237 – 259
    Buschle-Diller G., Zeronian S.H., 1992. Enhancing the reactivity and strength of cotton fibers. Journal of Applied Polymer Science, 45:967 – 979
    Cai J., Zhang L., Zhou J., Li H., Chen H., Jin H., 2004. Novel fibers prepared from cellulose in NaOH/urea aqueous solution. Macromolecular Rapid Communications, 25:1558 – 1562
    Casey, G.P., Ingledew, W.M., 1986. Ethanol tolerance in yeasts. Critical Reviews in Microbiology, 13:219 – 280
    Chang J.W., Huang L.Y., Lin Y.H., Duan K.J., 2011. The effect of fermentation configuration and FAN supplementation on ethanol production under very high gravity fermentation, Journal of Taiwanese Institute of Chemical Engineering, 42:1 – 4
    Cheung, S.W., Anderson, B.C., 1997. Laboratory investigation of ethanol production from municipal primary wastewater. Bioresource Technology., 59:81 – 96
    Dadi A.P., Varanasi S., Schall C.A., 2006. Enhancement of cellulose saccharification kinetics using an ionic liquid pretreatment step. Biotechnology and Bioengineering , 95:904 – 910
    Den Haan R., Rose S.H., Lynd L.R., van Zyl W.H., 2007. Hydrolysis and fermentation of amorphous cellulose by recombinant Saccharomyces cerevisiae. Metabolic Engineering, 9:87 – 94
    Devantier, R., Pedersen S., Olsson L., 2005. Characterization of very high gravity ethanol fermentation of corn mash. Effect of glucoamylase dosage, pre-saccharification and yeast strain. Applied Microbiology and Biotechnology, 68:622 – 629
    Dewes, T., Hünsche, E., 1998. Composition and microbial degradability in the soil of farmyard manure from ecologically-managed farms. Biological Agriculture and Horticulture, 16:251 – 268
    Fadeeva, J., Shmukler, L., Safonova, L., 2003. Investigation of the phosphoric acid-N,N-dimethylformamide system as potential solvent for cellulose. Journal of Molecular Liquids, 103 – 104:339 – 347
    Fink H.P., Weigel P., Purz H.J., Ganster J., 2001. Structure formation of regenerated cellulose materials from NMMO-solutions. Progress in Polymer Science (Oxford), 26:1473 – 1524
    Fort D.A., Remsing R.C., Swatloski R.P., Moyna P., Moyna G., Rogers R.D., 2007. Can ionic liquids dissolve wood? Processing and analysis of lignocellulosic materials with 1-n-butyl-3-methylimidazolium chloride. Green Chemistry, 9:63 – 69
    Girio F.M., Fonseca C., Carvalheiro F., Duarte L.C., Marques S., Bogel-Łukasik R., 2010. Hemicelluloses for fuel ethanol: A review. Bioresource Technology, 101:4775 – 4800
    Heinze, T., Koschella, A., 2005. Solvents applied in the field of cellulose chemistry:a mini review. Polimeros, 15:84 – 90

    Heinze T., Schwikal K., Barthel S., 2005. Ionic liquids as reaction medium in cellulose functionalization. Macromolecular Bioscience, 5:520 – 525
    Hendriks A.T.W.M., Zeeman G., 2009. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology, 100:10 – 18
    Hong, J., Ye, X., Zhang, Y.H.P., 2007. Quantitative determination of cellulose accessibility to cellulase based on adsorption of a nonhydrolytic fusion protein containing CBM and GFP with its applications. Langmuir, 23:12535 – 12540
    Jin, H., Zha, C., Gu, L., 2007. Direct dissolution of cellulose in NaOH/thiourea/urea aqueous solution. Carbohydrate Research, 342:851 – 858
    Kádár, Z., Szengyel, Z., Réczey, K., 2004. Simultaneous saccharification and fermentation (SSF) of industrial wastes for the production of ethanol. Industrial Crops and Products, 20:103 – 110
    Klemm D., Heublein B., Fink H.-P., Bohn A., 2005. Angewandte Chemie, 117:3422 – 3458; Angewandte Chemie International Edition, 44:3358 – 3393
    Kuo, C.H., Lee, C.K., 2009. Enhanced enzymatic hydrolysis of sugarcane bagasse by N-methylmorpholine-N-oxide pretreatment. Bioresource Technology, 100:866 – 871
    Laurence B D. and Norman G L., 2005. Lignin primary structure and dirigent sites. Current Opinion in Biotechnology, 16:407 – 415
    Lee S.H., Doherty T.V., Linhardt R.J., Dordick J.S., 2009. Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnology and Bioengineering, 102:1368 – 1376
    Li, Z., Hu, P., Yu, J., Hu, Z., Liu, Z., 2008. Preparation and characterization of regenerated cellulose fibers from a novel solvent system. Journal of Macromolecular Science, Part B: Physics, 47:288 – 295
    Lin Y.H., Chien W.S., Duan K.J., 2010. Correlations between reduction-oxidation potential profiles and growth patterns of Scharomyces cerevisiae during very-high gravity fermentation. Process Biochemistry, 45:765 – 770

    Liu L., Chen H., 2006. Enzymatic hydrolysis of cellulose materials treated with ionic liquid [BMIM]Cl. Chinese Science Bulletin, 51:2432 – 2436
    Lynd, L.R., Laser, M.S., Bransby, D., Dale, B.E., Davison, B., Hamilton, R., Himmel, M., Keller, M., McMillan, J.D., Sheehan, J., Wyman, C.E., 2008. How biotech can transform biofuels. Nature Biotechnology, 26:169 – 172
    Lynd, L.R., Weimer, P.J., Van Zyl, W.H., Pretorius, I.S., 2002. Microbial cellulose utilization: fundamentals and biotechnology. Microbiology and Molecular Biology Reviews, 66:506 – 577
    Mansfield S.D., Mooney C., Saddler J.N., 1999. Substrate and enzyme characteristics that limit cellulose hydrolysis. Biotechnology Progress, 15:804 – 816
    Margeot, A., Hahn-Hagerdal, B., Edlund, M., Slade, R., Monot, F., 2009. New improvements for lignocellulosic ethanol. Current Opinion in Biotechnology, 20:372 – 380
    Mosier N., Wyman C., Dale B., Elander R., Lee Y.Y., Holtzapple M., Ladisch M., 2005. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 96:673 – 686
    Mosier N.S., Ladisch C.M., Ladisch M.R., 2002. Characterization of acid catalytic domains for cellulose hydrolysis and glucose degradation. Biotechnology and Bioengineering, 79:610 – 618
    Mussatto, S.I., Dragone, G., Guimarães, P.M.R., Silva, J.P., Carneiro, L.M., Roberto, I.C., Vicente, A., Domingues, L., Teixeira, J.A., 2010. Technological trends, global market, and challenges of bio-ethanol production, Biotechnology Advances, 28:817 – 830
    Pan, X., Arato, C., Gilkes, N., Gregg, D., Mabee, W., Pye, K., Xiao, Z., Zhang, X., Saddler, J., 2005. Biorefining of softwoods using ethanol organosolv pulping:Preliminary evaluation of process streams for manufacture of fuel-gradeethanol and co-products. Biotechnology and Bioengineering, 90:473 – 481
    Puneet Dwivedi, Janaki R.R. Alavalapati, Pankaj Lal., 2009. Cellulosic ethanol production in the United States:Conversion technologies, current production status, economics, and emerging developments. Energy for Sustainable Development, 13:174 – 182

    Pu Y., Jiang N., Ragauskas A.J., 2007. Ionic liquid as a green solvent for lignin. Journal of Wood Chemistry and Technology, 27:23 – 33
    Ragauskas, A.J., Williams, C.K., Davison, B.H., Britovsek, G., Cairney, J., Eckert,C.A., Frederick Jr, W.J., Hallett, J.P., Leak, D.J., Liotta, C.L., Mielenz, J.R., Murphy, R., Templer, R., Tschaplinski, T., 2006. The path forward for biofuels and biomaterials. Science, 311:484 – 489
    Rahkamo, L., Viikari, L., Buchert, J., Paakkari, T., Suortti, T., 1998. Enzymatic and alkaline treatments of hardwood dissolving pulp. Cellulose, 5:79 – 88
    Rajeev K. Sukumaran, Reeta Rani Singhania, Ashok Pandey, 2005. Microbial cellulase – production, applications and challenges. Journal of Scientific & Industrial Research, 64:832 – 844
    Rayne S., Mazza G., 2007. Rapid dissolution of lignocellulosic plant materials in an ionic liquid. Nature Precedings, 1 – 6
    Reshamwala, S., Shawky, B.T., Dale, B.E., 1995. Ethanol production from enzymatic hydrolysates of AFEX-treated coastal Bermuda grass and switchgrass. Applied Biochemistry and Biotechnology, 51 – 52:43 – 55
    Rosenau T., Potthast A., Sixta H., Kosma P., 2001. The chemistry of side reactions and byproduct formation in the system NMMO/cellulose (Lyocell process). Progress in Polymer Science (Oxford), 26:1763 – 1837
    Ruan D., Zhang L., Zhou J., Jin H., Chen H., 2004. Structure and properties of novel fibers spun from cellulose in NaOH/thiourea aqueous solution. Macromolecular Bioscience, 4:1105 – 1112
    Saha, B.C., Iten, L.B., Cotta, M.A., Wu, Y.V., 2005. Dilute acid pretreatment, enzymatic saccharification, and fermentation of rice hulls to ethanol. Biotechnology Progress, 21:816 – 822
    Shallom, D. Shoham, Y.,2003. Microbial hemicelluloses. Current Opinion in Microbiology, 6:219 – 228
    Siddiqui, K.S., A.A. Saqib, M.H. Rashid, M.I. Rajoka, 2000. Carboxyl group modification significantly altered the kinetic properties of purified carboxymethylcellulase from Aspergillus niger. Enzyme and Microbial Technology, 27:467 – 474

    Sims, R., 2003. Biomass and resources bioenergy options for a cleaner environment in developed and developing countries; Elsevier Science: London, UK
    Srichuwong S., Fujiwara M., Wang X., Seyama T., Shiroma R., Arakane M., Mukojima N., Tokuyasu K., 2009. Simultaneous saccharification and fermentation (SSF) of very high gravity (VHG) potato mash for the production of ethanol. Biomass and Bioenergy, 33:890 – 898
    Sun Y., Cheng J., 2002. Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresource Technology, 83:1 – 11
    Swatloski R.P., Spear S.K., Holbrey J.D., Rogers R.D., 2002. Dissolution of cellulose with ionic liquids. Journal of the American Chemical Society, 124:4974 – 4975
    Thomas K.C., Hynes S.H., Jones A.M., Ingledew W.M., 1993. Production of fuel alcohol from wheat by VHG technology:effect of sugar concentration and fermentation. Applied Biochemistry and Biotechnology, 43:211 – 216
    Thomas K.C., Hynes S.J., Ingledew W.M., 1996. Practical and theoretical considerations in the production of high concentration of alcohol by fermentation. Process Biochemistry, 31:321 – 31
    Tu M., Zhang X., Kurabi A., Gilkes N., Mabee W., Saddler J., 2006. Immobilizatiom of β-glucosidase on Eupergit C for lignocellulose hydrolysis. Biotechnology Letters, 28:151 – 156
    Van Zyl, P.J., Moodley, V., Rose, S., Roth, R., van Zyl, W.H., 2009. Production of the Aspergillus aculeatus endo-1,4-b-mannanase in A.niger. Journal of Industrial Microbiology and Biotechnology, 36:611 – 617
    Walker G.M., 1998. Yeast physiology and biotechnology. John Wiley And Sons, Inc.; New York
    Wang F.Q., Gao C.J., Yang C.Y., Xu P., 2007. Optimization of an ethanol production medium in vary high gravity fermentation. Biotechnology Letters, 29:233 – 236
    Wei S., Kumar V., Banker G.S., 1996. Phosphoric acid mediated depolymerization and decrystallization of cellulose:Preparation of low crystallinity cellulose – A new pharmaceutical excipient. International Journal of Pharmaceutics, 142:175-181

    Wilkes, J.S., Zaworotko, M.J., 1992. Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. Journal of the Chemical Society, Chemical Communications, 965-967
    Wyman C.E., B.E. Dale, R.T. Elander, M. Holtzapple, M.R. Ladisch, Y.Y. Lee, 2005. Coordinated development of leading biomass pretreatment technologies. Bioresource Technolnology., 96:1959 – 1966
    Zhang S., Li F.X., Yu J.Y., Hsieh Y.L., 2010. Dissolution behaviour and solubility of cellulose in NaOH complex solution. Carbohydrate Polymers, 81, 668 – 674
    Zhang Y.H.P, 2008. Reviving the carbohydrate economy via multi-product lignocellulose biorefineries. Journal of Industrial Microbiology and Biotechnology, 35:367 – 375
    Zhang, Y.H.P., Cui, J., Lynd, L.R., Kuang, L.R., 2006. A transition from cellulose swelling to cellulose dissolution by o-phosphoric acid: Evidence from enzymatic hydrolysis and supramolecular structure. Biomacromolecules, 7:644 – 648
    Zhang Y.H.P, Ding S.Y., Mielenz J.R., Cui J.B., Elander R.T., Laser M., Himmel M.E., McMillan J.R., Lynd L.R., 2007. Fractionating recalcitrant lignocellulose at modest reaction conditions. Biotechnology and Bioengineering, 97:214 – 223
    Zhang Y.H.P., Lynd L.R., 2004. Toward an aggregated understanding of enzymatic hydrolysis of cellulose: Noncomplexed cellulase systems. Biotechnology and Bioengineering, 88:797 – 824
    Zhao H., Jones C.L., Baker G.A., Xia S., Olubajo O., Person V.N., 2009. Regenerating cellulose from ionic liquids for an accelerated enzymatic hydrolysis. Journal of Biotechnology, 139:47 – 54
    Zhao Y., Wang Y., Zhu J.Y., Ragauskas A., Deng Y., 2008. Enhanced enzymatic hydrolysis of spruce by alkaline pretreatment at low temperature. Biotechnology and Bioengineering, 99:1320 – 1328
    Zhou J., Zhang L., Cai J., 2004. Behavior of cellulose in NaOH/urea aqueous solution characterized by light scattering and viscometry. Journal of Polymer Science, Part B: Polymer Physics, 42:347 – 353
    Zhu, S., Wu, Y., Yu, Z., Zhang, X., Wang, C., Yu, F., Jin, S., Zhao, Y., Tu, S., Xue, Y., 2005. Simultaneous saccharification and fermentation of microwave/alkali pre-treated rice straw to ethanol. Biosystems Engineering, 92:229 – 235

    無法下載圖示 全文公開日期 2016/07/27 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE