簡易檢索 / 詳目顯示

研究生: 劉政佑
CHENG-YU LIU
論文名稱: 建構能分解纖維素寡糖之酵母菌發酵生產酒精之研究
Ethanol fermentation from cellulose hydrolysate by a recombinant cellooligosaccharide-assimilating yeast
指導教授: 李振綱
Cheng-Kang Lee
口試委員: 顏聰榮
Tsong-Rong Yan
王孟菊
Meng-Jiy Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 102
中文關鍵詞: Beta-葡萄糖苷酵素纖維雙糖同步糖化發酵
外文關鍵詞: Beta-glucosidase, cellobiose, simultaneous saccharification and fermentation
相關次數: 點閱:148下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 微生物細胞表面工程是利用細胞表面表現技術,使外源蛋白固定化於細胞表面,可應用於細胞催化反應、細胞吸附劑、活疫苗、生物感測器等領域。本研究探討將來自Bacillus circulans subsp. Alkalophilus之Beta-葡萄糖苷酵素(Beta-glucosidase)表現於酵母菌細胞表面,達到酵素固定化之目的,並應用於纖維素之水解發酵生產生質酒精(bioethanol)。Beta-葡萄糖苷酵素(Beta-glucosidase)可將纖維雙醣(cellobiose)水解成葡萄糖,提供給酵母菌生長及產生酒精,本論文所建構之表面表現質體pYDAGA2-Bgl轉入酵母菌宿主細胞中經誘導後,可將100 g/l之纖維雙醣(cellobiose)轉化產生出約23 g/l之酒精,而宿主細胞本身則無法利用纖維雙糖產出酒精,此能在表面表現Beta-glucosidase之酵母菌將有利於直接利用纖維素同步醣化發酵(SSF)產生酒精。由於一般商業纖維素水解酵素中較缺乏Beta-葡萄糖苷酵素(Beta-glucosidase),在水解纖維素的過程中會導致Endo-1,4-Beta-D-glucanase 及Exo-1,4-Beta-D-glucanase 之酵素活性會受到纖維雙醣(cellobiose)之抑制,而利用酵母菌細胞表面表現Beta-葡萄糖苷酵素(Beta-glucosidase)可填補商業酵素中此酵素之不足,實驗結果顯示轉型菌株SC-pYDAGA2-Bgl生產3g/l之酒精約只需要6hr,而宿主細胞需花約30hr,成功提升利用纖維素同步糖化發酵生產酒精之效率。


    The engineering of cell surface display is immobilization of heterogeneous protein on cell surface . It is widely used in catalytic reaction of cell , adsorbent of cell , vaccine , biosensor .We discuss that we will display Beta-glucosidase on yeast surface and use it to produce bioethanol from cellulose.Beta-glucosidase can hydrolyzes cellobiose to glucose that can provide energy for biomass and producing ethanol. 100(g/l) cellobiose as carbon source can obtain 23(g/l) ethanol from Beta-glucosidase-surface displaying yeast , but host can’t produce any ethanol , therefore the technology is opportunity to directly utilize cellulose to produce ethanol by simultaneous saccharification and fermentation (SSF) . Although commercial cellulose from Trichoderma contain endogenous Beta-glucosidase , but the activities of this enzyme are generally insufficient to prevent the accumulation of cellobiose, resulting in product inhibition of endoglucanases and cellobiohydrolases. Therefore we tried genetically to immobilize Beta-glucosidase on the cell surface of the yeast Saccharomyces cerevisiae in its active form to supply this insufficient enzyme , and then successfully promote the efficiency of producing ethanol from cellulose by SSF process .

    致謝 中文摘要 Ⅰ 英文摘要 Ⅱ 目錄 Ⅲ 圖目錄 Ⅶ 表目錄 Ⅹ 第一章 緒論 1 1.1 前言 1 1.2研究動機 2 第二章 文獻回顧 4 2.1木質纖維素(lignocellulose)來源與組成 4 2.2 纖維素水解酵素介紹 6 2.2.1 Beta-葡萄糖苷酵素(Beta-glucosidase , BG) 10 2.3 生質酒精(bioethanol) 14 2.3.1 纖維酒精轉化程序 14 2.3.2 釀酒酵母生產生質酒精 15 2.3.3 同步糖化及發酵 16 2.4 酵母菌Saccharomyces cerevisiae表面蛋白質表現 18 2.4.1 細胞表面表現(cell surface display) 18 2.4.2 酵母菌表面表現技術(yeast surface display) 20 2.4.2.1 GPI--anchored protein 22 2.4.2.2 a-agglutinin Receptor 25 2.4.2.3 Flo1p-anchor system 27 2.4.3 酵母菌Saccharomyces cerevisiae 29 2.4.4 酵母菌表現系統設計 31 2.4.5 酵母菌基因重組以及轉殖 34 2.4.6 酵母菌代謝醣類的兩個途徑 34 第三章 實驗內容 36 3.1 實驗材料 36 3.1.1 菌株及來源 36 3.1.2 質體 36 3.1.3 質體DNA純化套件組 37 3.1.4 標準分子量溶液 38 3.1.5 藥品 38 3.1.6 培養基 40 3.2 實驗設備 43 3.3 實驗流程 45 3.4 實驗步驟 46 3.4.1 質體之建構 46 3.4.2以GAL1啟動子控制Aga2-Bgl之表現在酵母菌Saccharomyces cerevisiae(AGA1)中 53 3.4.3 大量複製質體 55 3.4.3.1 質體轉殖入E. coli 宿主細胞 55 3.4.3.2 質體的純化 56 3.4.4 電穿孔轉殖法 57 3.4.5 使用搖瓶培養表現 Beta-glucosidase 58 3.4.6蛋白質之濃度分析(Bradford method) 59 3.4.7 還原糖濃度測定(DNS法) 60 3.4.8 葡萄糖苷酵素活性測試(呈色法) 62 3.4.9 利用纖維雙糖作為碳源進行發酵生產酒精 63 3.4.10纖維素之磷酸前處理 63 3.4.11酵素水解纖維素流程 64 3.4.12 纖維素同步糖化發酵(SSF)之流程 65 3.4.13 氣相層析儀(GC)分析酒精濃度 66 第四章 結果與討論 67 4.1纖維素之酵素水解探討 67 4.1.1 Beta-葡萄糖苷酵素(Beta-glucosidase)對纖維素水解之效應 67 4.1.2 溫度效應對纖維素水解之影響 71 4.1.3 前處理對纖維素水解之影響 73 4.2 Beta-葡萄糖苷酵素(Beta-glucosidase)表現菌株之建構 76 4.3 轉型菌株表現Beta-葡萄糖苷酵素(Beta-glucosidase) 80 4.4 S.cerevisiae表現 Beta-葡萄糖苷酵素(Beta-glucosidase)之活 性分析 82 4.5宿主細胞S.cerevisiae(Aga1)發酵葡萄糖生產酒精 87 4.6利用纖維雙糖(cellobiose)測試轉型菌株 88 4.6.1 利用YP-cellobiose plate 篩選轉型菌株 88 4.6.2利用纖維雙糖(cellobiose)發酵生產酒精 89 4.7轉型菌株SC-pYDAGA2-Bgl對纖維素之同步糖化水解發酵(SSF)生產酒精 93 第五章 結論 95 參考文獻 96

    [1] Aristidou, A., Penttila, M. (2000) Metabolic engineering applications to renewable resource utilization. Curr Opin Biotechnol 11:187-198

    [2] Acebal, C., Castillon, M.P., Estrada, P., Mata, I., E.Costa ,Aguado, J., Romero, D., Jimenez, F. (1986) Enhanced cellulase production from Trichoderma reesei QM9414 on physically treated wheat straw. Appl. Microbiol. Biotechnol. 24:218-223

    [3] Boder, E. T., and Wittrup, K. D. (1997)Yeast Surface Display for Screening Combinatorial Polypeptide Libraries. Nature Biotechnology 15, 553-557.

    [4] Beggs,J.D. (1991),“Metal-affinity separations: A new dimension in protein processing”, Bio/Technology ,9 , 151-156

    [5] Beguin, P., and M. Lemaire. (1996) The cellulosome : an exocellular,multiprotein complex specialized in cellulose degradation. Crit. Rev . Biochem . Mol . Biol. 31:201-236

    [6] BADAL C. SAHA, SHELBY N. FREER, AND RODNEY J. BOTHAST . (Oct. 1994) Production, Purification, and Properties of a Thermostable -Glucosidase from a Color Variant Strain of Aureobasidium pullulans. APPLIED AND ENVIRONMENTAL MICROBIOLOGY .p. 3774-3780

    [7] Cereghino J. L., Merryweather J. P., Cooit D. J., Heeberlein U. A., Masiaarz F. R., Mullenbath G. T., Urdea M. S., Valezuela P., and Barr P. J. (1984) α-factor-dirceted synthesis and secretion of mature foreign protein in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U. S. 81:4642-4646

    [8] Cabib,E.,Roberts,R.and Bowers,B. (1982) Synthesis of the yeast cell wall and its regulation.Ann.Rev.Biochem.51,763-793

    [9] Chiswell DJ, McCafferty J (1992) Phage antibodies: will new `coliclonal' antibodies replace monoclonal antibodies? Trends Biotechnol . 10: 80-84

    [10] Corinna Cappellaro, Karin Hauser,Vladimir Mrsa, Manfred Watzele,Gabriele Watzele, Claudia Gruber and Widmar Tanner (1991)Saccharomyces cerevisiae a- and -agglutinin: characterization of their molecular interaction. The EMBO Journal. vol. 10 no. 13 pp:4081 – 4088

    [11] Cappellaro, C., Baldermann, C., Rachel, R., and Tanner, W. (1994) Mating Type-Specific Cell-Cell recognition of Saccharomyces cerevisiae: Cell Wall Attachment and Active Sites of a- and α-Agglutinin. EMBO J. 13, 4737- 4744.

    [12] Cappellaro, C., Hauser, K., Mrsa, V., Watzele, M., Watzele, G., Gruber, C., and Tanner, W. (1991) Saccharomyces cerevisiae a- and α-Agglutinin: Characterization of Their Molecular Interaction. EMBO J. 10, 4081- 4088.

    [13] CHO,KWANG MYUNG AND YOUNG JE YOO, (1999). Novel SSF Process for Ethanol Production from Microcrystalline Cellulose Using the δ-Integrated Recombinant Yeast , Saccharomyces cerevisiae L2612δGCJ.Microbio. Biotechnol.9(3):340-345

    [14] Cereghino J. L., Cregg J. (2000) M..Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol Rev.24:45-66

    [15] Charlwood J., Bryant D., Skehel J. M., Camilleri P. (2001) Analysis of N-linked oligosaccharides : progress towards the characterization of glycoprotein-linked carbohydrates . Biomol Eng. 18:229-240

    [16] Cregg J. M., Vedvick T. S., Raschke W. C. (1993) Recent advances in the expression of foreign gene in Pichia pastois. Bio/Technology. 11: 905-910

    [17] Fleet, G. H. and Phaff, H. J. (1981)Fungal glucans-structure and metabolism. In Tanner,W .and Loewus, F.A. (Eds) , Encyclopedia of Plant Physiology,Vol.13B.Springer Verlag, Berlin,pp.416-440

    [18] Fujita Y, Takahashi S, Ueda M, Tanaka A, Okada H, Morikawa Y,Kawaguchi T,Arai M, Fukuda H,Kondo A., (2002) Direct and efficient production of ethanol from cellulosic material with a yeast strain displaying cellulolytic enzymes. Appl Environ Microbiol . 68 (10) : 5136-41

    [19] Georgiou G, Poetschke HL, Stathopoulos C, Francisco JA. (1993) Practical applications of engineering Gram-negative bacterial cell surfaces. Trends Biotechnol.11: 6-10

    [20] Gamal, R. F. (1985) Effect of substrate pretreatment on microbiol protein production. Egypt.J. Microbiol. (Spec. Issue) 81-89

    [21] Ginger Chao, Wai L Lau, Benjamin J Hackel, Stephen L Sazinsky, Shaun M Lippow & K Dane Wittrup(2006) Isolating and engineering human antibodies using yeast surface display,nature protocols .755-767

    [22] Hari,K.S. ,Janardhan,R.T. ,Chowdary,G.V. (2001) Simultaneous sacchaification and fermentation of lignocellulosic wastes to ethanol using a thermotolerant yeast. Bioresour. Technol.77,193-196

    [23] Hadfield, C., Raina,K.K, Shashih-Menon, K., and Mount, R. C., (1993) “The expression and performance of cloned genes in yeasts”, Mycol (review). Res., 97,897-944

    [24] Lin H. and Cornish V.W. (2002) . Screening and Selection Methods for Large-Scale Analysis of Protein Function. Angew.Chem.Int.Ed. 41:4402-4425

    [25] Hinnen,A., Hicks, J.B., and fink,G.R., (1978). “Transformation of yeast”, Proc. Natl.Acad. Sci. U.S.A. 75,1929-1933

    [26] Jeong-Jun Yoon* and Young-Kyoon Kim (2005) Degradation of Crystalline Cellulose by the Brown-rot Basidiomycete Fomitopsis palustris .The Journal of Microbiology, December, p.487-492

    [27] Kim SY, Sohn JH, Pyun YR, Choi ES. (2002) A cell surface display system using novel GPI-anchored proteins in Hansenula polymorpha. Yeast. 19(13):1153-63.

    [28] Lynd, L.R., Weimer, P.J., Van Zyl, W.H., Pretorius, I.S. (2002). Microbial cellulose utilization: fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 66,506-577

    [29] Lipke PN, Ovalle R. (1998) Cell wall architecture in yeast: new structure and new challenges. J Bacteriol. 180(15):3735-40.

    [30] Lu, C.-F., Montijn, R. C., Brown, J. L., Klis, F., Kurjan, J., and Bussey, H. (1995). Glycosyl Phosphatidylinositol-Dependent Cross-Linking of Alpha-Agglutinin and Beta 1,6-Glucan in the Saccharomyces cerevisiae cell wall. J. Cell Biol. 128, 333-340.

    [31] Maobing Tu, Xiao Zhang, Arwa Kurabi, Neil Gilkes, Warren Mabee and Jack saddler. (2006) Immobilizatiom of -glucosidase on Eupergit C for lignocellulose hydrolysis . Biotechnology Letters28:151-156

    [32] Matsumoto T, Fukuda H, Ueda M, Tanaka A, Kondo A (2002) Construction of yeast strains with high cell surface lipase activity by using novel display system based on the Flo1p flocculation functional domain. Appl Environ Microbiol 68:4517–4522

    [33] Riaan Den Haan , Shaunita H. Rose , Lee R. Lynd , Willem H. van Zyl. (2007)Hydrolysis and fermentation of amorphous cellulose by recombinant Saccharomyces cerevisiae. Metabolic Engineering: 987-94

    [34] Ronél van Rooyen, Bärbel Hahn-Hägerdal , Daniël C. La Grange,Willem H. van Zyl. (2005) Construction of cellobiose-growing and fermenting Saccharomyces cerevisiae strains.Journal of Biotechnology 120 284-295

    [35] Ronél van Rooyen, Bärbel Hahn-Hägerdal,Daniël C. La Siddiqui , K.S.,A.A.Saqib,M.H.Rashid , and M.I.Rajoka. (2000).Carboxyl group modification significantly altered kinetic properties of purified carboxymethylcellulase from Aspergillus niger . Enzyme Microb. Technol 27 : 467-474

    [36] Satoshi Katahira, Atsuko Mizuike, Hideki Fukuda, Akihiko Kondo. (2006) Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose- and cellooligosaccharide-assimilating yeast strain. Appl Microbiol Biotechnol;72 : 1136-1143

    [37] Scorer C.A., Clare J.J., McCombie W.R., Romanos M.A., Sreekrishna K. (1994)Rapid selection using G418 of high copy number transformants of Pichia pastoris for high-level foreign gene expression. Bio/Technology;12: 181-184

    [38] SARI PAAVILAINEN, JUKKA HELLMAN, AND TIMO KORPELA. (1993) Purification, Characterization, Gene Cloning, and Sequencing of a New b-Glucosidase from Bacillus circulans subsp. Alkalophilus. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Mar. p. 927-932

    [39] Saha B.C., (2003) Hemicellulose bioconversion. J Ind Microbiol 30 : 279-291

    [40] Sakamoto R, Arai M, Murao S . (1985) Enzymic properties of the three -glucosidases from Aspergillus aculeatus No. F-50. Agric Biol Chem. 49: 1283-1290

    [41] Siddiqui, K. S., A. A. Saqib, M. H. Rashid, and M. I. Rajoka. (2000) Carboxyl group modification significantly altered the kinetic properties of purified carboxymethylcellulase from Aspergillus niger. Enzyme Microb. Technol. 27:467-474

    [42] TOSHIYUKI M., MITSUYOSHI U., MIDORI Y., HARUYUKI A., YUMI S., NAOMI K., MASAKO O., TERUO A., AND ATSUO T. (Apr. 1997) Construction of a Starch-Utilizing Yeast by Cell Surface Engineering. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, p. 1362–1366

    [43] T. Murai , M. Ueda , H. Atomi , Y. Shibasaki , N. Kamasawa , M. Osumi , T. Kawaguchi ,M. Arai , A. Tanaka(1997) Genetic immobilization of cellulase on the cell surface of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 48: 499-503

    [44] Taira Homma, Michihiro Fujii, Jun-ichi Mori, Tohru Kawakami , Kenji Kuroda, and Masayuki Taniguchi.. (1992) Production of Cellobiose by Enzymatic Hydrolysis : Removal of -glucosidase from cellulase by affinity precipitation using chitosan. Biotechnology and Bioengineering 41 : 405-410

    [45] Van Arsdell, J N., S. Kwork, V.L. Schweichart, M. B. Ladner, D. H. Gelfand, and M. A. Innis. (1987) Cloning, characterization, and expression in Saccharomyces cerevisiae of endoglucanase I from Trichderma reesei. Biotechnology.5:60-4

    [46] Watson,J.D., Gilman,M., Witkowski, J., and Zoller, M. (1992), Recombinant DNA, 2nded., Scientific American Books

    [47] Walker G.M. (1998) Yeast physiology and biotechnology. John Wiley And Sons ; New York

    [48] Washida, M., S. Takahashi, M. Ueda, and A. Tanaka. (2001) Spacer-mediated display of active lipase on the yeast cell surface. Appl. Microbiol. Biotechnol. 56:681–686.

    [49] Y.-H. Percival Zhang , Jingbiao Cui, Lee R. Lynd, and Lana R.Kuang (2006) A Transition from Cellulose Swelling to Cellulose Dissolution by o-Phosphoric Acid: Evidence from Enzymatic Hydrolysis and Supramolecular Structure . Biomacromolecules ,7, 644-648

    [50] Zhang , Y.H., Lynd , L.R. (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems . Biotechnol . Bioeng . 88,797-824.

    無法下載圖示
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE