簡易檢索 / 詳目顯示

研究生: 高和謙
Ho-Chien Kao
論文名稱: 同步醣化與醱酵製造乳酸程序之建模
Modeling of Simultaneous Saccharification and Fermentation of Sweet Potato to Lactic Acid
指導教授: 周宜雄
Yi-Shyong Chou
口試委員: 李豪業
Hao-Yeh Lee
錢義隆
I-Lung Chien
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 116
中文關鍵詞: 乳酸同步醣化醱酵參數估計最佳化控制模糊多目標規劃
外文關鍵詞: lactic acid, simultaneous saccharification and fermentation, parameter estimation, optimal control, fuzzy multi-objective programming
相關次數: 點閱:281下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 乳酸在食品、醫藥和化妝品等工業中皆有廣泛應用,同時也是聚乳酸此一生物可降解塑膠的重要單體。本研究目的在於建立以番薯作為原料的D-乳酸和L-乳酸同步醣化醱酵程序的數學模式並找出最適合的操作模式以及操作條件。建模過程使用基因演算法做參數估計,並以適合度檢定(goodness-of-fit test)驗證模式誤差。操作模式最適化則使用非支配排序基因演算法,搜尋所有可能的相對最優解,並進一步引入模糊多目標規劃,協助決策者明確搜尋出一組最優解。實驗結果得到僅需十項參數便可準確預測的數學模式,而該數學模式經過模糊多目標規劃後所得的最佳操作模式亦較原批式操作程序更佳。


    Lactic acid has wildly applications in food, pharmaceutical, and cosmetic industries, and it is also the monomer of polylactic acid which is biodegradable plastic. Developing a mathematical model of D- and L-lactic acid production from sweet potato via simultaneous saccharification and fermentation is the main purpose of this study. The other subject of this study is optimization of bioreactor operation. The parameter estimation of modeling procedure is developed by genetic algorithm, and we verify the model by goodness of fit test. The optimization of operating mode will be searched by non-dominated sorting genetic algorithm, and it will generate all possible solutions which are also known as Pareto set. To assist the decision makers choosing a best solution from Pareto set, we introduce the fuzzy multi-objective programming. After all the experiments we get a predictive model with only ten parameters, and formulate an operating mode of bioreactor by the fuzzy multi-objective programming. This modified mode is better than original batch system.

    摘要 I Abstract III 誌謝 V 目錄 VII 圖目錄 IX 表目錄 XIII 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 組織章節 3 第二章 文獻探討 5 2.1 同步醣化醱酵程序動力學 5 2.1.1 澱粉醣化動力學 6 2.1.2 菌體醱酵動力學 7 2.2 數值方法 10 2.3 反應器操作模式最適化 12 第三章 醱酵系統建模與參數估計 15 3.1 前言 15 3.2 同步醣化醱酵程序之模式建立 15 3.3 參數估計方法 18 3.4 模式驗證 21 3.4.1 模式一 21 3.4.1.1 LA104模式一模擬結果與討論 22 3.4.1.2 ATCC25600模式一模擬結果與討論 31 3.4.2 模式二 41 3.4.2.1 LA104模式二模擬結果與討論 44 3.4.2.2 ATCC25600模式二模擬結果與討論 59 第四章 最適化操作模式 75 4.1 前言 75 4.2 最適控制問題 75 4.3 單目標最適化程序 77 4.3.1 基因演算法設定與染色體編碼 77 4.3.2 單目標最適化實驗結果與討論 79 4.4 多目標最適化程序 93 4.4.1 多目標最佳化 93 4.4.2 模糊多目標規劃 94 4.4.3 多目標最適化實驗結果與討論 96 第五章 結論 109 參考文獻 111

    [1] Abdel-Rahman, M. A., Tashiro, Y., & Sonomoto, K. (2011). Lactic acid production from lignocellulose-derived sugars using lactic acid bacteria: overview and limits. Journal of biotechnology, 156(4), 286-301.
    [2] Aiba, S., Shoda, M., & Nagatani, M. (1968). Kinetics of product inhibition in alcohol fermentation. Biotechnology and Bioengineering, 10(6), 845-864.
    [3] Altıok, D., Tokatlı, F., & Harsa, Ş. (2006). Kinetic modelling of lactic acid production from whey by Lactobacillus casei (NRRL B‐441). Journal of Chemical Technology and Biotechnology, 81(7), 1190-1197.
    [4] Amrane, A. (2005). Analysis of the kinetics of growth and lactic acid production for Lactobacillus helveticus growing on supplemented whey permeate. Journal of chemical technology and biotechnology, 80(3), 345-352.
    [5] Anuradha, R., Suresh, A. K., & Venkatesh, K. V. (1999). Simultaneous saccharification and fermentation of starch to lactic acid. Process Biochemistry,35(3), 367-375.
    [6] Baati, L., Roux, G., Dahhou, B., & Uribelarrea, J. L. (2004). Unstructured modelling growth of Lactobacillus acidophilus as a function of the temperature.Mathematics and computers in simulation, 65(1), 137-145.
    [7] Back, T., & Schwefel, H. P. (1993). An overview of evolutionary algorithms for parameter optimization. Evolutionary computation, 1(1), 1-23.
    [8] Bouguettoucha, A., Balannec, B., & Amrane, A. (2011). Unstructured Models for Lactic Acid Fermentation- A Review. Food Technology and Biotechnology,49(1), 3-12.
    [9] Dutta, S. K., Mukherjee, A., & Chakraborty, P. (1996). Effect of product inhibition on lactic acid fermentation: simulation and modelling. Applied microbiology and biotechnology, 46(4), 410-413.
    [10] Fujii, M., & Kawamura, Y. (1985). Synergistic action of α‐amylase and glucoamylase on hydrolysis of starch. Biotechnology and bioengineering, 27(3), 260-265.
    [11] Jang, M. F., & Chou, Y. S. (2013). Modeling and optimization of bioethanol production via a simultaneous saccharification and fermentation process using starch. Journal of Chemical Technology and Biotechnology, 88(6), 1164-1174.
    [12] John, R. P., Anisha, G. S., Nampoothiri, K. M., & Pandey, A. (2009). Direct lactic acid fermentation: focus on simultaneous saccharification and lactic acid production. Biotechnology advances, 27(2), 145-152.
    [13] John, R. P., Nampoothiri, K. M., & Pandey, A. (2007). Fermentative production of lactic acid from biomass: an overview on process developments and future perspectives. Applied Microbiology and Biotechnology, 74(3), 524-534.
    [14] Karst, D., & Yang, Y. (2006). Molecular modeling study of the resistance of PLA to hydrolysis based on the blending of PLLA and PDLA. Polymer, 47(13), 4845-4850.
    [15] Katare, S., Bhan, A., Caruthers, J. M., Delgass, W. N., & Venkatasubramanian, V. (2004). A hybrid genetic algorithm for efficient parameter estimation of large kinetic models. Computers & chemical engineering, 28(12), 2569-2581.
    [16] Kroumov, A. D., Modenes, A. N., & de Araujo Tait, M. C. (2006). Development of new unstructured model for simultaneous saccharification and fermentation of starch to ethanol by recombinant strain. Biochemical engineering journal,28(3), 243-255.
    [17] Lan, C. Q., Oddone, G., Mills, D. A., & Block, D. E. (2006). Kinetics of Lactococcus lactis growth and metabolite formation under aerobic and anaerobic conditions in the presence or absence of hemin. Biotechnology and bioengineering, 95(6), 1070-1080.
    [18] Luedeking, R., & Piret, E. L. (1959). Transient and steady states in continuous fermentaion. Theory and experiment. Journal of biochemical and microbiological technology and engineering, 1(4), 431-459.
    [19] Mandli, A. R., & Modak, J. M. (2011). Evolutionary algorithm for the determination of optimal mode of bioreactor operation. Industrial & Engineering Chemistry Research, 51(4), 1796-1808.
    [20] Modak, J. M., & Lim, H. C. (1992). Optimal mode of operation of bioreactor for fermentation processes. Chemical engineering science, 47(15), 3869-3884.
    [21] Monod, J. (1942). Research on the Glowth of Bacterial Cultures. Research on the Glowth of Bacterial Cultures.
    [22] Monteagudo, J. M., Rodriguez, L., Rincon, J., & Fuertes, J. (1997). Kinetics of lactic acid fermentation by Lactobacillus delbrueckii grown on beet molasses.Journal of Chemical Technology and Biotechnology, 68(3), 271-276.
    [23] Nguyen, C. M., Choi, G. J., Choi, Y. H., Jang, K. S., & Kim, J. C. (2013). D-and L-lactic acid production from fresh sweet potato through simultaneous saccharification and fermentation. Biochemical Engineering Journal, 81, 40-46.
    [24] Nguyen, C. M., Kim, J. S., Hwang, H. J., Park, M. S., Choi, G. J., Choi, Y. H., ... & Kim, J. C. (2012). Production of L-lactic acid from a green microalga, Hydrodictyon reticulum, by Lactobacillus paracasei LA104 isolated from the traditional Korean food, makgeolli. Bioresource technology, 110, 552-559.
    [25] Nguyen, C. M., Kim, J. S., Nguyen, T. N., Kim, S. K., Choi, G. J., Choi, Y. H., ... & Kim, J. C. (2013). Production of L-and D-lactic acid from waste Curcuma longa biomass through simultaneous saccharification and cofermentation.Bioresource technology, 146, 35-43.
    [26] Ochoa, S., Yoo, A., Repke, J. U., Wozny, G., & Yang, D. R. (2007). Modeling and Parameter Identification of the Simultaneous Saccharification‐Fermentation Process for Ethanol Production. Biotechnology progress, 23(6), 1454-1462.
    [27] Ohno, H., Nakanishi, E., & Takamatsu, T. (1978). Optimum operating mode for a class of fermentation. Biotechnology and Bioengineering, 20(5), 625-636.
    [28] Park, L. J., Park, C. H., Park, C., & Lee, T. (1997). Application of genetic algorithms to parameter estimation of bioprocesses. Medical and biological engineering and computing, 35(1), 47-49.
    [29] Passos, F. V., Fleming, H. P., Ollis, D. F., Felder, R. M., & McFeeters, R. F. (1994). Kinetics and modeling of lactic acid production by Lactobacillus plantarum. Applied and Environmental Microbiology, 60(7), 2627-2636.
    [30] Pinelli, D., Gonzalez-Vara, A. R., Matteuzzi, D., & Magelli, F. (1997). Assessment of kinetic models for the production of L-and D-lactic acid isomers by Lactobacillus casei DMS 20011 and Lactobacillus coryniformis DMS 20004 in continuous fermentation. Journal of fermentation and bioengineering, 83(2), 209-212.
    [31] Polakovič, M., & Bryjak, J. (2004). Modelling of potato starch saccharification by an Aspergillus niger glucoamylase. Biochemical Engineering Journal, 18(1), 57-63.
    [32] Rani, K. Y., & Rao, V. R. (1999). Control of fermenters–a review. Bioprocess Engineering, 21(1), 77-88.
    [33] Rogers, P. L., Bramall, L., & McDonald, I. J. (1978). Kinetic analysis of batch and continuous culture of Streptococcus cremoris HP. Canadian journal of microbiology, 24(4), 372-380.
    [34] Sarkar, D., & Modak, J. M. (2003). Optimisation of fed-batch bioreactors using genetic algorithms. Chemical Engineering Science, 58(11), 2283-2296.
    [35] Sarkar, D., & Modak, J. M. (2005). Pareto-optimal solutions for multi-objective optimization of fed-batch bioreactors using nondominated sorting genetic algorithm. Chemical Engineering Science, 60(2), 481-492.
    [36] Sharma, V., & Mishra, H. N. (2014). Unstructured kinetic modeling of growth and lactic acid production by Lactobacillus plantarum NCDC 414 during fermentation of vegetable juices. LWT-Food Science and Technology, 59(2), 1123-1128.
    [37] Yanez, R., Moldes, A. B., Alonso, J. L., & Parajo, J. C. (2003). Production of D (−)-lactic acid from cellulose by simultaneous saccharification and fermentation using Lactobacillus coryniformis subsp. torquens. Biotechnology letters, 25(14), 1161-1164.
    [38] Yao, L., & Sethares, W. A. (1994). Nonlinear parameter estimation via the genetic algorithm. IEEE Transactions on signal processing, 42(4), 927-935.
    [39] Zimmermann, H. J. (1978). Fuzzy programming and linear programming with several objective functions. Fuzzy sets and systems, 1(1), 45-55.
    [40] Zwietering, M. H., Jongenburger, I., Rombouts, F. M., & Van't Riet, K. (1990). Modeling of the bacterial growth curve. Applied and environmental microbiology, 56(6), 1875-1881.

    QR CODE