簡易檢索 / 詳目顯示

研究生: 徐為澤
Wei-Ze Xu
論文名稱: 具有寄生電感模型的並聯 SiC 功率器件之可擴展型圓形佈局方案
A Scalable Circular Layout for Parallel SiC Power Devices with Parasitic Inductance Modelling
指導教授: 龐敏熙
Man-Hay Pong
邱煌仁
Huang-Jen Chiu
口試委員: 龐敏熙
Man-Hay Pong
林景源
Jing-Yuan Lin
謝耀慶
Yao-Ching Hsieh
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 60
中文關鍵詞: SiCMOSFET並聯器件電路佈局開關同步寄生電感模擬
外文關鍵詞: Silicon carbide, MOSFET, parallel devices, circuit layout, switching synchronization, layout inductance modelling
相關次數: 點閱:321下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • SiC MOSFET以其優越的性能和較低的損耗在大功率能量轉換領域獲得了廣泛關注和廣泛應用。在實際應用中,它們通常需要並聯連接,但不平衡的寄生參數會阻礙開關同步動作。因此,佈局中低且平衡的寄生電感至關重要。在本文中,我們提出了一種適用於並聯SiC器件的圓形佈局方案。並且這種對稱的圓形佈局設計,可以擴展以容納多個器件。
    為了驗證所提出的圓形佈局方案的有效性,我們對電路電感進行了有限元分析模擬。 通過此分析,我們發現電路寄生電感與一般平列佈局方法相比顯著降低,並且在業界要求的範圍內。
    通過實驗驗證,我們的研究論證了圓形佈局方案在並聯SiC器件中的可行性和有效性。該方案減少了電路寄生電感,同時提高了多個並聯器件切換的一致性。該研究為進一步優化SiC MOSFET的並聯佈局提供了有價值的見解。


    SiC MOSFET have gained significant attention and widespread applications in the field of high-power energy conversion due to their superior performance and lower losses. In practical applications, they often require parallel connections, but unbalanced parasitic parameters can hinder synchronous switching. Therefore, low and symmetrical parasitic inductance in the layout is crucial. In this paper, we propose a circular layout scheme suitable for parallel SiC devices. This circular layout is symmetric and can be expanded to accommodate multiple devices.
    To investigate the effectiveness of the proposed circular layout scheme, we conducted finite element analysis of the circuit inductance. Through this analysis, we found that the circuit inductance falls within a reasonable range and is significantly lower compared to conventional layout methods.
    Through experimental verification, our research demonstrates the feasibility and effectiveness of the circular layout scheme in parallel SiC devices. The scheme reduces circuit parasitic inductance while maintaining consistency in the switching of multiple parallel devices. This research provides valuable insights for further optimizing the layout of SiC devices.

    Abstract iii 誌 謝 iv 目 錄 v 圖索引 vii 表索引 ix 第一章 緒論 1 1.1 研究動機與目的 1 1.2 論文大綱 2 第二章 SiC MOSFET探讨 3 2.1 SiC MOSFET在電力電子領域中的特性優勢和應用現狀 3 2.2 SiC MOSFET並聯技術的研究現狀 5 第三章 可擴展的圓形佈局設計與分析 7 3.1 分析流程與方法 7 3.2外部線路分析 9 3.3 一般平列並聯佈線 10 3.3.1 一般器件安裝 11 3.3.2 兩個器件並聯 11 3.3.3 四個器件並聯 14 3.4可擴展的圓形並聯佈局 16 3.4.1 圓形佈局器件安裝 17 3.4.2 四個器件圓形並聯佈線 18 3.4.3 驅動子板的設計 19 3.5有限元分析軟體的模擬與驗證 20 第四章 寄生電感與開關時間分析 25 4.1 並聯四個SiC MOSFET的電路分析 25 4.1.1 RLC串聯電路分析 26 4.1.2 新的閾值電壓 27 4.2開啟階段 28 4.2.1 開啟延遲時間 29 4.2.2 開啟電流上升時間 30 4.3關斷階段 31 4.3.1 關斷延遲時間 32 4.3.2 關斷電壓上升時間 33 4.3.3 關斷電流下降時間 33 第五章 模擬結果 35 第六章 實驗驗證 40 6.1 實驗架設 40 6.2 實驗波形圖 42 第七章 結論與未來展望 44 參考文獻 45

    [1] F. Wang, Z. Zhang, T. Ericsen, R. Raju, R. Burgos and D. Boroyevich, “Advances in Power Conversion and Drives for Shipboard Systems,” in Proceedings of the IEEE, vol. 103, no. 12, pp. 2285-2311, Dec. 2015.
    [2] A. Q. Huang, “Power semiconductor devices for smart grid and renewable energy systems,” Proc. IEEE, vol. 105, no. 11, pp. 2019-2047, Nov. 2017.
    [3] X. She et al., “Review of silicon carbide power devices and their applications,” IEEE Trans. Ind. Electron., vol. 64, no. 10, pp. 8193-8205, Oct. 2017.
    [4] C. Zhang, Z. Li, Le Chen et al., “Research on the high stable constant current source based on multi-MOSFETs in paralleling connection,” Electrical Measurement and Instrumentation, vol. 53, no. 12, pp. 81-86, 2016.
    [5] Y. Funaki and K. Wada, “Gate Drive Circuit Configuration for Current Balancing of SiC MOSFETs Connected in Parallel,” 2021 IEEE International Future Energy Electronics Conference (IFEEC), Taipei, Taiwan, 2021, pp. 1-5.
    [6] Y. Xue et al., “A compact planar Rogowski coil current sensor for active current balancing of parallel-connected silicon carbide MOSFETs,” Proc. of IEEE Energy Convers. Congr. Expo., pp. 4685-4690, Sep. 2015.
    [7] Z. Zhang, J. Dix, F. Wang, B. J., Blalock, D. Costinett, et al., “Intelligent gate drive for fast switching and crosstalk suppression of SiC devices,” IEEE Trans. Power Electron., vol. 32, no. 12, pp. 9319-9332, Dec. 2017.
    [8] S. Kokosis, I. Andreadis, G. Kampitsis, P. Pachos and S. Manias, “Forced current balancing of parallel connected SiC JFETs during forward and reverse conduction mode,” IEEE Trans. Power Electron., vol. 32, no. 2, pp. 1400-1410, Feb. 2017.
    [9] T. Liu, R. Ning, T. T. Y. Wong and Z. J. Shen, “Modeling and Analysis of SiC MOSFET Switching Oscillations,” in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 4, no. 3, pp. 747-756, Sept. 2016.
    [10] J. Biela, M. Schweizer, S. Waffler and J. W. Kolar, "SiC versus Si—Evaluation of potentials for performance improvement of inverter and DC–DC converter systems by SiC power semiconductors", IEEE Trans. Ind. Electron., vol. 58, no. 7, pp. 2872-2882, Jul. 2011.
    [11] J. W. Palmour et al., "Silicon carbide power MOSFETs: Breakthrough performance from 900 V up to 15 kV", Proc. IEEE 26th Int. Symp. Power Semiconductor Devices IC’s (ISPSD), pp. 79-82, Jun. 2014.
    [12] G. Wang, F. Wang, G. Magai, Y. Lei, A. Huang and M. Das, "Performance comparison of 1200V 100A SiC MOSFET and 1200V 100A silicon IGBT", Proc. IEEE Energy Convers. Congr. Expo., pp. 3230-3234, Sep. 2013.
    [13] Xiang Liu and Shang Liu, "Depth of wide Bandgap Semiconductor Industry: the rise and Future of SiC and GaN", Journal of Frequency Converter World, no. 12, pp. 42-48, 2019.
    [14] X. Huang, J. Zhao, F. Li and F. Lin, "Loss characteristics of input-series output-parallel SiC DC-DC converter used in auciliary power systems", IEEJ J. Ind. Appl, vol. 8, no. 4, pp. 677-687, 2019.
    [15] K. Yamaguchi, K. Katsura, T. Yamada and Y. Sato, "High power density SiC-based inverter with power density of 70 kW/liter or 50 kW/kg", IEEJ J. Ind. Appl, vol. 8, no. 4, pp. 694-703, 2019.
    [16] A. S. Abdelrahman, Z. Erdem, Y. Attia and M. Z. Youssef, "Wide Bandgap Devices in Electric Vehicle Converters: A Performance Survey", Can. J. Electr. Comput. Eng, vol. 41, no. 1, pp. 45-54, 2018.
    [17] R. Chattopadhyay, S. Bhattacharya, N. C. Foureaux, I. A. Pires, H. de Paula, L. Moraes, et al., "Low-voltage PV power integration into medium voltage grid using high-voltage SiC devices", IEEJ J. Ind. Appl, vol. 4, no. 6, pp. 767-775, 2015.
    [18] J.H. Jegal, M. Kwon, C.-Y. Oh, K. Kim and J.-P. Lee, "Implementation of three-phase four-leg inverter using SiC MOSFET for UPS applications", J. Power Electron, vol. 21, pp. 103-112, 2021.
    [19] K. Sato, H. Kato and T. Fukushima, "Development of SiC applied traction system for next-generation shinkansen high-speed trains", IEEJ J. Ind. Appl, vol. 9, no. 4, pp. 453-459, 2020.
    [20] J. O. Gonzalez, O. Alatise, J. Hu, L. Ran and P. A. Mawby, "An Investigation of Temperature-Sensitive Electrical Parameters for SiC Power MOSFETs," in IEEE Transactions on Power Electronics, vol. 32, no. 10, pp. 7954-7966, Oct. 2017.
    [21] C. Dimarino, Z. Chen, M. Danilovic, D. Boroyevich, R. Burgos and P. Mattavelli, "High-temperature characterization and comparison of 1.2 kV SiC power MOSFETs", Proc. IEEE Energy Convers. Congr. Expo., pp. 3235-3242, Sep. 2013.
    [22] M. Mudholkar, S. Ahmed, M. N. Ericson, S. S. Frank, C. L. Britton and H. Alan Mantooth, "Datasheet driven silicon carbide power MOSFET model", IEEE Trans. Power Electron., vol. 29, no. 5, pp. 2220-2228, May 2014.
    [23] J. K. Lim, D. Peftitsis, J. Rabkowski, M. Bakowski and H. P. Nee, "Analysis and experimental verification of the influence of fabrication process tolerances and circuit parasitics on transient current sharing of parallel-connected SiC JFETs", IEEE Trans. Power Electron., vol. 29, no. 5, pp. 2180-2191, May 2014.
    [24] Li, Parallel Connection of Silicon Carbide MOSFETs for Multichip Power Modules, Aalborg, Denmark:Aalborg Univ., 2015.
    [25] J. Hu, O. Alatise, J. A. O. Gonzalez, R. Bonyadi, L. Ran and P. A. Mawby, "The effect of electrothermal nonuniformities on parallel connected SiC power devices under unclamped and clamped inductive switching", IEEE Trans. Power Electron., vol. 31, no. 6, pp. 4526-4535, Jun. 2016.
    [26] J. O. Gonzalez, O. Alatise, J. Hu, L. Ran and P. A. Mawby, "An investigation of temperature-sensitive electrical parameters for SiC power MOSFETs", IEEE Trans. Power Electron., vol. 32, no. 10, pp. 7954-7966, Oct. 2017.
    [27] A. Griffo, J. Wang, K. Colombage and T. Kamel, "Real-time measurement of temperature sensitive electrical parameters in SiC power MOSFETs", IEEE Trans. Ind. Electron., vol. 65, no. 3, pp. 2663-2671, Mar. 2018.
    [28] HZ Huang, J.J Ke and P Sun, "Effect of parasitic inductance mismatch on the parallel current distribution of SiC MOSFETs", Semiconductor Technology, vol. 43, no. 11, pp. 833-840, 2018.
    [29] Zheng Zeng, Weihua Shao, Borong Hu et al., "Active current sharing of SiC MOSFETs in parallel based on coupled inductors", Proceedings of the Chinese Society of Electrical Engineering, vol. 37, no. 7, pp. 2068-2080, 2017.
    [30] Y. Mao, Z. Miao, C. M. Wang and K. D. T. Ngo, "Balancing of peak currents between paralleled SiC MOSFETs by drive-source resistors and coupled power-source inductors", IEEE Trans. Ind. Electron., vol. 64, no. 10, pp. 8334-8343, Oct. 2017.
    [31] S. G. Kokosis et al., "Forced current balancing of parallel-connected SiC JFETs during forward and reverse conduction mode", IEEE Trans. Power Electron., vol. 32, no. 2, pp. 1400-1410, Feb. 2017.
    [32] Y. Mao, Z. Miao, C. M. Wang and K. D. T. Ngo, "Passive balancing of peak currents between paralleled MOSFETs with unequal threshold voltages", IEEE Trans. Power Electron., vol. 32, no. 5, pp. 3273-3277, May 2017.
    [33] Y. Mao, "Passive balancing of switching transients between paralleled SiC MOSFETs", 2017.
    [34] Z. Miao, "Packaging and magnetic integration for reliable switching of paralleled SiC MOSFETs" in , 2018.
    [35] X. Wang, Z. Zhao, Y. Zhu, K. Chen and L. Yuan, "A comprehensive study on the gate-loop stability of the SiC MOSFET", Proc. IEEE Energy Convers. Congr. Expo., pp. 3012-3018, 2017.
    [36] X. Zhang and Q. Zhong, "Improved adaptive-series-virtual-impedance control incorporating minimum ripple point tracking for load converters in DC systems", IEEE Trans. Power Electron., vol. 31, no. 12, pp. 8088-8095, Dec. 2016.
    [37] Z. Zeng and X. Li, "Comparative study on multiple degrees of freedom of gate driver for transient behavior regulation of SiC MOSFET", IEEE Trans. Power Electron., vol. 33, no. 10, pp. 8754-8763, Oct. 2018.
    [38] Jun Zhao, Bo Tan, Li Ding et al., "Research on high-efficiency driving technology of BLDCM based on paralleling SiC MOSFET architecture", Journal of Modern Electronics Technique, vol. 41, no. 9, pp. 147-151, 2018.
    [39] Y. Xue et al., "A compact planar Rogowski coil current sensor for active current balancing of parallel-connected silicon carbide MOSFETs", Proc. of IEEE Energy Convers. Congr. Expo., pp. 4685-4690, Sep. 2015.
    [40] Z. Zhang, J. Dix, F. Wang, B. J., Blalock, D. Costinett, et al., "Intelligent gate drive for fast switching and crosstalk suppression of SiC devices", IEEE Trans. Power Electron., vol. 32, no. 12, pp. 9319-9332, Dec. 2017.
    [41] S. Kokosis, I. Andreadis, G. Kampitsis, P. Pachos and S. Manias, "Forced current balancing of parallel connected SiC JFETs during forward and reverse conduction mode", IEEE Trans. Power Electron., vol. 32, no. 2, pp. 1400-1410, Feb. 2017.
    [42] H. Li, S. Beczkowski, S. M. Nielsen, R. Maheshwari and T. Franke, "Circuit mismatch and current coupling effect influence on paralleling SiC MOSFETs in multichip power modules", Proc. IEEE PCIM Europe, pp. 1-8, 2015.
    [43] H. Li et al., "Influences of device and circuit mismatches on paralleling silicon carbide MOSFETs", IEEE Trans. Power Electron., vol. 31, no. 1, pp. 621-634, Jan. 2016.
    [44] J. Fabre and P. Ladoux, "Parallel connection of 1200-V/100-A SiC-MOSFET half-bridge modules", IEEE Trans. Ind. Appl., vol. 52, no. 2, pp. 1669-1676, 2016.
    [45] J. Hu, O. Alatise, J. Gonzalez, P. Alexakis, L. Ran and P. Mawby, "Robustness and balancing of parallel-connected power devices: SiC versus. CoolMOS", IEEE Trans. Ind. Electron., vol. 63, no. 4, pp. 2092-2102, Apr. 2016.
    [46] S. K. Singh, N. K. Pilli, F. Guedon and R. Mcmahon, "PMSM drive using silicon carbide inverter: Design development and testing at elevated temperature", Proc. IEEE Int. Conf. Ind. Technol., pp. 2612-2618, Mar. 2015.
    [47] H. Li, S. Munk-Nielsen, S. Beczkowski and X. Wang, "A novel DBC layout for current imbalance mitigation in SiC MOSFET multichip power modules", IEEE Trans. Power Electron., vol. 31, no. 12, pp. 8042-8045, Dec. 2016.
    [48] Guy Moxey,Gate Drives and Gate Driving with SiC MOSFETs,https://www.wolfspeed.com/knowledge-center/article/gate-drives-and-gate-driving-with-sic-mosfets/

    QR CODE