簡易檢索 / 詳目顯示

研究生: 江煜陞
YU-SHENG CHIANG
論文名稱: 鉛心橡膠支承墊與高阻尼橡膠支承墊多軸向遲滯行為之試驗與分析研究
Experimental and Analytical Study on Multiaxial Hysteresis Behavior of Lead Rubber Bearings and High-Damping Rubber Bearings
指導教授: 黃震興
Jenn-Shin Hwang
口試委員: 許丁友
Ting-Yu Hsu
林旺春
Wang-Chuen Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 365
中文關鍵詞: 鉛心橡膠支承墊高阻尼橡膠支承墊扭轉耦合效應多軸向遲滯行為非比例平面軌跡載重遲滯分析模型
外文關鍵詞: lead-rubber bearing, high-damping rubber bearing, torsional coupling effect, multiaxial hysteresis behavior, non-porportional bilateral loading, hysteresis model
相關次數: 點閱:569下載:38
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   橡膠支承墊為結構隔震系統常用隔震器之一,以往大多數研究中僅探討橡膠支承墊單軸向遲滯行為,其雙軸向遲滯行為則較少。故本研究將進行鉛心橡膠支承墊與高阻尼橡膠支承墊之單軸向反覆加載試驗,並進行不同軸壓、加載軌跡以及速度下之雙軸向非比例平面軌跡載重試驗,以比較單軸向與雙軸向行為之差異性,進而探討扭轉耦合效應所造成橡膠支承墊遲滯行為的改變和破壞模式。
      因鉛心橡膠支承墊之遲滯行為可採用雙線性分析模型來概估,而高阻尼橡膠支承墊則因具有高度非線性行為,若以雙線性分析模型來模擬容易失真,故本研究將基於三種單軸向分析模型,進一步以平面二維材料組合定律為基礎,將單軸向分析模型延伸至雙軸向分析模型,透過試驗結果來驗證單軸向及雙軸向分析模型之適用性及準確性,並針對分析模型中不適用之處提出建議。
      最後,經由試驗與分析驗證可知,使用本研究建議之數值分析模型者,若礙於試驗設備而無法取得雙軸向之識別參數者,仍可藉由單軸向之識別參數,進而預測雙軸向遲滯行為。因現行耐震規範中僅以單軸向遲滯行為作為設計指標,卻忽略消除扭轉耦合效應造成局部破壞之疑慮,故本研究建議鉛心橡膠支承墊應以雙軸向分析模型作為設計依據,而高阻尼橡膠支承墊則可沿用單軸向分析模型作為設計依據。


      Rubber bearing including high damping rubber bearing (HDRB) and lead rubber bearings (LRB) are commonly used isolation bearing in seismic isolation applications. In existing studies for hysteresis behavior of rubber bearings, the bearings have been typically subjected to cyclic unilateral loading, and the loading path is therefore proportional. In order to investigate the behavior of rubber bearings under bilateral non-proportional loadings, a tri-axial test setup and the experimental test sequence are designed in this study. Two types of isolation bearings, the lead-rubber bearing and high-damping rubber bearing, are subjected to unilateral and non-proportional bi-lateral loading under the different vertical pressure. The non-proportional loading paths include a circular orbit, an 8-shape orbit and a square orbit, respectively. Through the comparison between the results under different test conditions, the torsional coupling effect is found to be not negligible on the mechanical properties and hysteresis behavior of LRB and HDRB.
      The hysteresis behavior of the LRB has been normally approximated in practice by a bilinear model. However, the hysteresis behavior of the HDRB was highly nonlinear, may not be well captured by the existing bilinear approximation. In this analytical study, two-dimensional constitute law and plane vector concept are employed to extend the unilateral hysteresis model to correlate the test results with the analytical results. With the decent agreement between the measurement and simulation, it can be concluded that the extended hysteresis model is accurate and applicable for capturing the bilateral hysteresis behavior of rubber isolation bearing. In addition, it is also found that using the proposed model with the parameter identified from unilateral tests, the biaxial hysteresis behavior can still be well predicated.
      Besides, in the seismic design specifications, it is only required to conduct the unilateral test for performance qualification of isolation bearings. By so doing, the torsional coupling effect will be ignored. Based on this study, it is suggested that bilateral tests for LRB should be required so that the biaxial hysteresis model can be well identified for analytical purposes. Nevertheless, for HDRB the hysteresis model identified from unilateral tests is sufficient to predict the bilateral mechanical behavior with fidelity.

    摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VII 圖目錄 XII 第一章 緒論 1 1.1研究背景與動機 1 1.2研究重點與內容 4 第二章 橡膠支承墊之力學行為與分析模型 6 2.1橡膠支承墊之力學性質 6 2.1.1橡膠支承墊之基本力學行為 6 2.1.2橡膠支承墊之扭轉耦合效應 8 2.2橡膠支承墊之分析模型 9 2.2.1前言 9 2.2.2 Abe分析模型 10    2.2.2.1單軸向Abe 分析模型 10    2.2.2.2雙軸向Abe 分析模型 12 2.2.3修訂Hwang分析模型 14    2.2.3.1單軸向修訂Hwang分析模型 14    2.2.3.2雙軸向修訂Hwang分析模型 15 2.2.4 Bouc-Wen分析模型 16    2.2.4.1單軸向Bouc-Wen分析模型 16    2.2.4.2雙軸向Bouc-Wen分析模型 17 2.2.5模型最佳化參數識別 18    2.2.5.1非線性最小平方差 18    2.2.5.2下降式單純形法 20    2.2.5.3最佳化方法比較 21 第三章 單軸向反覆加載試驗與雙軸向非比例平面載重軌跡試驗結 果 23 3.1試驗裝置 23 3.1.1試體架設裝置 23 3.1.2量測儀器 24 3.2試驗用縮尺鉛心橡膠支承墊與高阻尼橡膠支承墊 25 3.2.1縮尺鉛心橡膠支承墊 25 3.2.2縮尺高阻尼橡膠支承墊 25 3.3試驗程序 25 3.3.1單軸向反覆載重試驗程序與結果 26 3.3.2雙軸向平面軌跡加載試驗程序與結果 27 3.4單軸向反覆加載試驗與雙軸向平面軌跡加載試驗結果比較 33 第四章 數值分析結果與試驗結果比較 35 4.1前言 35 4.2 Abe分析模型數值分析結果與試驗結果比較 35 4.3 Abe分析模型適用性 36 4.4修訂Hwang分析模型數值分析結果與試驗結果比較 37 4.4 Bouc-Wen分析模型數值分析結果與試驗結果比較 38 4.5數值分析結果之比較 38 4.6數值分析模型之實用性 39 第五章 鉛心橡膠支承墊與高阻尼橡膠支承墊之試驗結果比較 41 5.1遲滯迴圈之比較 41 5.2有效勁度之比較 41 5.3等效阻尼比之比較 42 5.4扭轉耦合效應之比較 43 5.5鉛心橡膠支承墊於雙軸向平面軌跡加載試驗前後之性能測試比較 45 5.6橡膠支承墊於試驗後之內外部反應 45 第六章 結論與建議 47 6.1結論 47 6.2建議 48 參考文獻 49

    【1】 內政部營建署 (民100)。建築物耐震設計規範及解說。
    【2】 Yao, J. T. P. (1972). Concept of structural control. Journal of the Structural Division, 98(7), 1567-1574.
    【3】 Soong, T. T., & Dargush, G. F. (1997), Passive energy dissipation systems in structural engineering. New York: John Wiley & Songs.
    【4】 Skinner, R. I., & Robinson, W. H., & McVerry, G. H. (1993). An introduction to seismic isolation. Chichester, England: John Wiley & Songs.
    【5】 Naeim, F., & Kelly, J. M. (1999). Design of seismic isolated structures: from theory to practice. New York: Wiley,
    【6】 Al-Hussaini, T. M., & Zayas, V. A., & Constantinou, M. C. (1994). Seismic isolation of a multi-story frame structure using spherical sliding isolation systems (Technical Rep. NCEER-94-0007). State University of New York at Buffalo, Buffalo, N.Y.
    【7】 Hamidi, M., & ElNaggar, M. H., & Vafai, A., & Ahmadi, G. (2003). Seismic isolation of buildings with sliding concave foundation (SCF). Earthquake Engineering and Structural Dynamics, 32, 15-29.
    【8】 Lin, T. W., & Hone, C. C. (1993). Base isolation by free rolling rods under basement. Earthquake Engineering and Structural Dynamics, 22, 261-273.
    【9】 Wang,, S. J., & Hwang, J. S., & Chang, K. C., & Shiau, C. Y., & Lin, W. C., & Tsai, M. S., & Hong , J. X., & Yang, Y. H. (2014). Sloped multi-roller isolation devices for seismic protection of equipment and facilities. Earthquake Engineering and Structural Dynamics, 43(10), 1443-1461.
    【10】 Hwang, J. S., & Ku, S. W. (1997). Analytical modeling of high damping rubber bearing. Journal of Structural Engineering, 123(8), 1029-1036.
    【11】 Hwang, J. S., & Wang, J. C. (1998). Seismic response prediction of HDR bearing using fractional derivative Maxwell model. Engineering Structures, 20(9), 849-856.
    【12】 Hwang, J. S., Wu, J. D., Pan, T. C., & Yang, G. (2002). A mathematical hysteretic model for elastomeric isolation bearing. Earthquake Engineering and Structural Dynamics, 31(4), 771-789.
    【13】 吳健達 (民87)。高阻尼橡膠支承墊之分析模式 (碩士論文)。國立台灣科技大學,台北市。
    【14】 Pan, T. C., & Yang, G. (1996). Nonlinear analysis of base-isolated MDOF structures. Proceedings of the 11th World Conference on Earthquake Engineering, Mexico.
    【15】 Mullins, L. (1969). Softening of rubber by deformation. Rubber Chemistry and Technology, 42(1), 339-362.
    【16】 Abe, M., Yoshida, J., & Fujino, Y. (2004). Multiaxial behaviors of laminated rubber bearings and their modeling. I: Experimental study. Journal of Structural Engineering, 130(8), 1119-1132.
    【17】 Abe, M., Yoshida, J., & Fujino, Y. (2004). Multiaxial behaviors of laminated rubber bearings and their modeling. II: Modeling. Journal of Structural Engineering, 130(8), 1133-1144.
    【18】 Özdemir, H. (1973). Nonlinear transient dynamic analysis of yielding structures (Doctoral dissertation). University of California, Berkeley, California.
    【19】 Graesser, E. J., & Cozzarelli, F. A. (1989). Multidimensional model of hysteretic material behavior for vibration analysis of shape memory energy absorbing devices. (Technical Rep. NCEER-89-0018). State University of New York at Buffalo, Buffalo, N.Y.
    【20】 Grasser, E. J., & Cozzarelli, F. A. (1991). A multi-dimensional hysteretic model for energy absorbing devices. (Technical Rep. NCREE-91-0006), State University of New York at Buffalo, Buffalo, N. Y.
    【21】 江衍弘 (民103)。高阻尼橡膠隔震支承墊之分析模型修訂與驗證試驗研究 (碩士論文)。國立台灣科技大學,台北市。
    【22】 黃柏文 (民104)。高阻尼橡膠隔震支承墊多軸向遲滯行為之試驗與分析 (碩士論文)。國立台灣科技大學,台北市。
    【23】 Bouc, R. (1967). Force vibration od mechanical system with hysteresis. Abstract Proc. Proceedings of the 4th conference on nonlinear oscillation, Prague, Czechoslovakia.
    【24】 Wen, Y. K. (1976). Method of random vibration of hysteretic system. Journal of Engineering Mechanics, 102, 249-263.
    【25】 潘立誌 (民105)。鉛心橡膠支承墊多軸向遲滯行為之試驗與分析 (碩士論文)。國立台灣科技大學,台北市。
    【26】 Yamamoto M., Minewaki S., Yoneda, H., & Higashino, M. (2012). Nonlinear behavior of high-damping rubber bearings under horizontal bidirectional loading: full-scale teats and analytical modeling. Earthquake Engineering and Structural Dynamics, 41, 1845-1860.
    【27】 Fenves, G. L., & Huang W. H., & Whittaker, A. S., & Clark, P. W., & Mahin, S. A. (1998). Modeling and characterization of seismic isolation bearings. U. S. Italy Workshop on Seismic Protective System for Bridges, New York.
    【28】 Damian, N. G., & Gregory, L. F., & Andrew, S. W. (2004). Bidirection modeling of high-damping rubber bearings. Istituto Universitario di Studi Superiori di Pavia, Italy.
    【29】 Otori, H. (1994). Dynamic characteristics of lead rubber bearing with dynamic two-dimensional test equipment. ASME PVP, Conf., 275-2.
    【30】 Computer and Structures, Inc. SAP2000. Berkeley, California.
    【31】 Computer and Structures, Inc. ETABS. Berkeley, California.
    【32】 楊印涵 (民100)。使用高阻尼橡膠隔震支承之建築結構非線性地震力分析 (碩士論文)。國立台灣科技大學,台北市。
    【33】 Veletsos, A. S., & Ventura, C. E. (1986). Model analysis of non-classically damped linear systems. Earthquake Engineering and Structural Dynamics, 14(2), 217-243.
    【34】 鍾立來 (民82)。結構主動控制之狀態空間系統。結構工程,第八卷,第二期,89-98。
    【35】 Moss, P. J., Carr, A. J., & Cooke, N. (1996). The seismic behavior of elastomeric and lead-rubber bearings. Proceedings of the 11th World Conference on Earthquake Engineering, Mexico.
    【36】 American Association of State Highway and Transportation Officials. (1999). Guide Specilcations for Seismic Isolation Design. Washington.
    【37】 Madsen, K., Nielsen, H. B., & Tingleff, O. (2004). Method for non-linear least squares problems [2nd ed]. Informatics and Mathematical Modeling, Technical University of Denmark.
    【38】 Kelley, C. T. (1999). Iterative Methods for Optimization. Society for Industral and Applied Mathematics, Carolina.
    【39】 Press, H. W., Flannery, B. P., Teukolsky, S. A., & Vetterling, T. W. (1988). Numerical recipes in C, Cambridge University Press, London.

    QR CODE