簡易檢索 / 詳目顯示

研究生: 林筠珊
Yun-Shan Lin
論文名稱: 近斷層地震對隔震結構之影響及相應設計對策
Effects of Near-Fault Ground Motions on Seismic Isolation Buildings and Corresponding Design Strategies
指導教授: 黃震興
Jenn-Shin Hwang
口試委員: 黃尹男
Yin-Nan Huang
汪向榮
Shiang-Jung Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 313
中文關鍵詞: 近斷層地震鉛心橡膠支承墊液態黏性阻尼器隔震系統
外文關鍵詞: Near-fault ground motions, isolation system, viscous dampers, nonlinear dynamic time history analysis
相關次數: 點閱:351下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隔震系統的防震效益已於試驗研究及實務應用上被證實,證明於多數情況下隔震系統確實能有效控制傳遞至上部結構的水平剪力,進而降低上部結構之加速度反應。然而,於近斷層地區使用隔震系統仍為一項重大挑戰,由於近斷層地震波具有一長週期的速度脈衝波,且於長週期範圍仍具高地震能量,使隔震系統產生過大的位移,進而傳遞較大水平剪力至上部結構,如此不僅可能造成隔震層破壞,上部結構須承受很大的加速度,甚至可能使上部結構傾覆。
    目前的隔震設計大多以設計地震力(DBE)與最大考量地震力(MCE)為設計依據,於近斷層地震作用下隔震設計可能無法發揮理想效益;若兼顧近斷層地震設計,則又可能使隔震系統剛性過大,導致其對中小地震失去隔震效果,因此有必要擬定完整設計對策,設計一個優質的隔震系統得以於小中大地震及近斷層地震中皆能完善發揮隔震效果。
    根據上述討論,本研究主要目的為利用雙自由度模型模擬隔震結構受近斷層地震作用下的的動力反應情形,了解隔震結構於近斷層地震作用下面臨的困難,續以於隔震系統加裝黏性阻尼器之設計對策應對 ,利用黏性阻尼器之力學行為特性合併使用具雙線性遲滯特性之鉛心橡膠支承墊,致力發展適當之設計方法使隔震系統得以於小中大地震及近斷層地震中皆能完善發揮隔震效果。


    The effectiveness of seismic isolation design in reducing the transmitted force to the superstructure has been well recognized. However, the isolation design against near-fault ground motions often containing long period velocity and/or displacement pulses is still challenging. Dramatic displacement demand on the isolation system and thus unacceptably transmitted forces by the isolation system are the major concerns in the research. Currently, most existing seismic design codes only provide design guidelines for the isolation system against design basis earthquake (DBE) and maximum considered earthquake (MCE), relatively few specification has been given to the isolation design against near-fault ground motions. The dilemma in the isolation design against near-fault ground motions is that, in the attempt to control the maximum displacement by means of larger characteristic strength and added damping (viscous dampers), the effectiveness of the isolation design against the far-field earthquake will then be limited.
    In this study, the super structure with different natural periods is modeled as a single degree of freedom system such that the whole structure including the isolation system is modeled as a two degree of freedom system. The isolation system is composed of bilinear hysteretic bearings and viscous dampers. The superstructure is assumed to remain elastic during the ground shaking. The system is designed using the response spectra of measured near-fault ground motions, and inelastic dynamic analysis is conducted to investigate the effectiveness of isolation design. Both the maximum displacement and transmitted force of the isolation system subject to near-fault and far-field ground motions are examined. In addition the responses of the superstructure are also discussed. It is concluded that the isolation design considering only near-fault ground motions will dramatically reduce the isolation effectiveness against far-field quakes. Nevertheless, the incorporation of nonlinear viscous dampers with a damping exponent larger than 1.0 is recommended for future research to meet the goal of design.

    第一章 緒論 1 1.1研究背景與目的 1 1.2研究目的 3 第二章 文獻回顧 5 2.1前言 5 2.2近斷層地震之三大特性 5 2.2.1 Forward Directivity 5 2.2.2 Fling Step 6 2.2.3 Maximum Incremental Velocity 6 2.3近斷層地震篩選方法與依據 8 2.3.1小波分析理論 8 2.3.2地震篩選依據 9 2.4雙自由度模型之理論基礎與應用 11 2.4.1雙自由度模型之理論基礎 11 2.4.2隔震結構於近斷層地震之設計對策 15 第三章 近斷層地震對隔震結構之影響 17 3.1前言 17 3.2雙自由度隔震結構模型之設計與建立 17 3.2.1雙自由度模型之基本資訊 17 3.2.2隔震系統之設計方法與基本資訊 19 3.2.3地震資料選取 22 3.3隔震結構之非線性歷時分析反應 22 3.3.1上部結構週期對隔震結構於近斷層地震作用下之反應影響 23 3.3.2質量比對隔震結構於近斷層地震作用下之反應影響 25 3.3.3隔震結構於遠域地震之反應 26 3.4隔震設計於近斷層地區面臨之困難 26 第四章 於近斷層地區使用隔震系統之設計對策 29 4.1前言 29 4.2加入非線性黏性阻尼器之隔震系統設計方法 29 4.2.1雙自由度系統之基本資訊 29 4.2.2隔震系統基本資訊 29 4.2.3加入非線性黏性阻尼器之隔震系統設計流程 31 4.2.4地震資料選取 33 4.3加裝非線性黏性阻尼器之隔震結構反應比較 34 4.3.1總體阻尼比對含非線性黏性阻尼器之隔震結構反應影響 35 4.3.2上部結構週期對外加阻尼效益之影響 39 4.3.3含非線性黏性阻尼器之隔震結構於遠域地震之反應 42 4.4隔震系統之較佳設計組合 42 4.4.1改變鉛心橡膠支承墊特徵值之隔震結構反應 43 4.4.2以線性黏性阻尼器設計之設計原理與反應結果 44 第五章 結論與建議 49 參考文獻 53 附表 58    

    【1】 “CSMIP Strong-Motion Records from the Northridge, California Earthquake of January 17 1994”. California Department of Conservative, Division of Mines and Geology, Office of Strong Motion Studies, Report OSMS 94 -07.
    【2】 Berkeley, California. (1995). “Seismic Isolation Update. Dynamic Isolation System”, Inc.
    【3】 Berkeley, California. (1990). “Force Control Bearings for Bridges”, Dynamic Isolation System, Inc.
    【4】 Kelly, J.M. (1994). “Dynamic and Failure Characteristics of Bridgestone Isolation Bridges”, EERC Report No. 91/04, Earthquake Engineering Research Center, University of Berkeley.
    【5】 San Francisco, California. (1993). “Friction Pendulum Seismic Isolation Bearings”, Earthquake Protection Systems, Inc.
    【6】 Jangid, R.S., and Kelly, J.M. (2007). “Base isolation for near-fault motions”, Earthquake Engineering and Structural Dynamics, Volume 30, p.691-707.
    【7】 溫國樑 (1999),“九二一集集大地震全面勘災報告-強地動調查-”,國家地震工程研究中心報告NCREE-99-052。
    【8】 邱聰智、翁樸文、沈文成、何郁姍、黃世建、鍾立來 (2018),“2016美濃地震台南市震損建物資料庫”,國家地震工程研究中心報告NCREE-18-004。
    【9】 王仁佐、王修賢、江宏偉、江奇融、李柏翰、李翼安、沈文成、林凡茹、林旺春、林哲民、林沛暘、林瑞良、洪曉慧、柴駿甫、郭俊翔、翁樸文、張毓文、許尚逸、陳俊仲、游忠翰、黃郁惟、黃雋彥、曾柏翰、楊卓諺、楊炫智、趙書賢、劉佳泓、盧志杰、賴姿妤、蕭輔沛、蘇進國 (2018),“2018年2月6日花蓮地震勘災報告”,國家地震工程研究中心報告NCREE-18-005。
    【10】 Kelly, J.M. (1999). “The role of damping in seismic isolation.”, Earthquake Engineering and Structural Dynamics, Volume 28 ,p.3-20.
    【11】 Kelly, J.M. (1990). “Base Isolation: Linear Theory and Design.” Earthquuake Spectra, Volume 6, No 2.
    【12】 Wang, S.J., Chang, K.C., Hwang, J.S. and Lee, B.H. (2011). “Simplified analysis of mid-story seismically isolated buildings.” Earthquake Engineering and Structural Dynamics, Volume 40, p.119-133.
    【13】 Somerville, P. G., Smith, N. F., Graves, R. W. and Abrahamson, N. A. (1997). “Modification of Empirical Strong Ground Motion Attenuation Relations to Include the Amplitude and Duration Effects of Rupture Directivity.” Seismological Research Letters, Volume 68, November 1.
    【14】 Reid, H. F. (1910). “The Mechanics of the Earthquake, The California Earthquake of April 18, 1906, Report of the State Investigation Commission.” Volume 2, Carnegie Institution of Washionton, D.C.
    【15】 Kalkan, E., and Sashi K. K. (2006). “Effects of Fling Step and Forward Directivity on Seismic Response of Buildings.” Earthquake Spectra, Volume 22, No.2, p. 367-390.
    【16】 Bertero, V. V., Mahin, S. A., and Herrera, R. A. (1978). “Aseismic Design Implications of Near-Fault San Fernando Earthquake Record.” Earthquake Engineering and Structural Dynamics, Volume 6, p. 31-42.
    【17】 Hall, J. H., Heaton, T. H., Halling, M. W., and Wald, D. J. (1995). “Near-Source Ground Motion and Its Effects on Flexible Buildings.” EERI Earthquake Spectra, Volume 11, No.4.
    【18】 胡昌華 (2004),“基於MATLAB6.X的系統分析與設計:小波分析”,西安市:西安電子科技大學出版社。
    【19】 Baker, J. W. (2007). “Quantitative Classification of Near-Fault Ground Motions Using Wavelet Analysis.” Bulletin of the Seismological Society of America, Volume 97, No.5, p. 1486-1501.
    【20】 Shahi, S. K., and Baker, J. W. (2014). “An Efficient Algorithm to Identify Strong-Velocity Pulses in Multicomponent Ground Motions.” Bulletin of the Seismological Society of America, Volume 104, No.5, p. 2456-2466.
    【21】 “Computers and Structures”, SAP2000 Analysis Reference Volume 1, Inc., Berkely, California.,1996.
    【22】 Hwang, J.S., Wu, J.D., Pan, T.C. and Yang, G. (2002). “A mathematical hysteretic model for elastomeric isolation bearings.” Earthquakes Engineering and Structural Dynamics, 31 ,p. 771-789.
    【23】 鍾立來、楊卓諺、賴勇安、陳鴻銘、吳賴雲 (2012),“ 耐震設計規範之解疑-隔震系統設計位移依結構振動週期而調整之公式” ,結構工程 第二十七卷第三期,p.18-28。
    【24】 陳廷暉(2019),“近斷層地震對隔震系統之影響及相應設計對策”,台灣科技大學碩士論文。
    【25】 內政部營建署(2011),“建築物耐震設計規範及解說”。
    【26】 Hwang, J.S., Hung, C.F., Huang, Y.N. and Wang, S.J. (2010). “Design force transmitted by isolation system composed of lead-rubber bearings and viscous dampers”, International Journal of Structural Stability and Dynamics, Volume 10, No. 2, p. 287–298.
    【27】 Jangid, R.S. (2007). “Optimum lead–rubber isolation bearings for near-fault motions”, Engineering Structures Dynamics, 29(10), p. 2503-2531.

    QR CODE