簡易檢索 / 詳目顯示

研究生: 劉哲瑞
ZHE-RUI LIU
論文名稱: 近斷層之速度脈衝週期研究
An Investigation of Velocity Pulse Period of Near-Fault Ground Motions
指導教授: 黃震興
Jenn-Shin Hwang
口試委員: 許丁友
Ting-Yu Hsu
黃尹男
Yin-Nan Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 256
中文關鍵詞: 近斷層地震小波分析理論速度脈衝脈衝週期區間
外文關鍵詞: Near-fault ground motions, wavelet analysis theory, velocity pulse, pulse period range
相關次數: 點閱:311下載:19
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近斷層地震(Near-Fault Ground Motion)速度歷時中常具有明顯脈衝之速度波,使其對結構物危害性遠勝一般遠域地震。2007年Baker等人針對近斷層地震速度歷時具有明顯速度脈衝的特性,以小波分析理論率先提出一套量化判斷的方法。並於2014年由Shahi與Baker等人進行篩選條件的修正優化,建立了更具參考價值的判斷分類機制,同時應用於強地動資料庫(NGA-West2)中,篩選出244筆近斷層地震資料,成為現今相關領域研究者判斷及使用近斷層地震資料之依據;其由小波分析定義的速度脈衝週期(Tp),在工程實務中結構共振思維上是一項重要的參數。
    然而,經本研究發現由Shahi與Baker等人篩選出之速度脈衝易偏向長脈衝週期,和實務常見結構基本振動週期相差甚遠,工程上意義薄弱;若依此方法則可能導致近斷層地震速度脈衝對結構並不具有破壞潛勢的誤解。例如,Shahi與Baker對1999集集地震之TCU052EW的識別脈衝週期高達12秒,如此的長週期速度脈衝對土木結構是鮮少可能具有破壞性的。因此本研究以Shahi與Baker等人建立之篩選機制為依據,並修訂其速度脈衝判定條件,以近斷層地震歷時中不同脈衝週期的速度脈衝,並分別考慮傳統耐震及隔震兩種結構分析模型,進行非線性動力分析,由不同週期的脈衝波對結構反應之激發作為指標,探討速度脈衝對近斷層地震之結構破壞潛勢的指標意義。
    經本研究發現,近斷層地震中含有多個對結構激發劇烈反應之速度脈衝,僅篩選出單一脈衝週期速度脈衝難以完整表述地震歷時對結構危害性,故本研究建議該以一脈衝週期區間涵蓋的速度脈衝作為對結構破壞潛勢探討之依據。


    Near-fault ground motions containing velocity pulses have been considered to be more destructive than far-field ground motions to structures. In 2007, Jack.W. Baker proposed a method, based on wavelet analysis, to quantitatively identify velocity pulses of near-fault ground motions. In 2014, Shahi and Baker developed a more reliable method by optimizing some criteria to extract the largest velocity pulse from a given near-fault ground motion. The proposed algorithm was then used to classify each record in the NGA-West2 database and has identified a total of 244 near-fault ground motion records. These records have been used as the basis for the research on the effects of near-fault ground motions on civil infrastructures.
    Based on the concept of structural resonance, the velocity pulse period (Tp) of a near-fault ground motion deduced from wavelet analysis is recognized to possess a great damage potential to structures if the structural fundamental period is coincident with the velocity pulse period. However, in this study it has been found that the pulse periods identified by Shahi and Baker method for near-fault ground motions tend to be much longer than the fundamental period of usual practical civil engineering structures, e.g. the pulse period of TCU052EW of 1999 Taiwan Chi-Chi earthquake was identified to be approximately 12 seconds. This long period pulse may not be destructive to the usual civil infrastructures. As a consequence, the criteria proposed by Shahi and Baker was modified to extract different velocity pulses with different periods from a single near-fault ground motion so that the effect of velocity pulses can be examined more clearly. Two simple bi-linear hysteretic systems including a conventional earthquake-resistant structure and a base-isolated system are adopted for nonlinear response history analysis. Based on this study, it is found that a near-fault ground motion may contain a number of velocity pulses with different periods. Some velocity pulses show much larger damage potential than the one extracted based on Shahi and Baker’s criteria for the same near-fault ground motion. Therefore, it is suggested that the velocity pulses covered by a pulse period range should be used as a basis for exploring the damage potential of a near-fault ground motion. The damage potential of a near-fault ground motion should not be characterized by only a single velocity pulse with a particular period.

    摘要 I Abstract III 誌謝 V 表目錄 IX 圖目錄 XIII 第一章 緒論 1 1.1研究背景及目的 1 1.2研究重點與內容 5 第二章 近斷層地震特性及篩選記錄 7 2.1 Forward Directivity現象 7 2.2 Fling Step與脈衝波早期發生 8 2.3近斷層地震篩選依據 9 2.3.1小波分析理論 9 2.3.2近斷層地震篩選依據 12 2.4近斷層地震篩選方法 14 第三章 近斷層地震脈衝週期 17 3.1近斷層地震之脈衝週期 17 3.2工程實務常見之結構物週期 19 3.3地震資料選取 21 3.4近斷層地震擷取脈衝週期 22 第四章 脈衝週期對結構之影響 25 4.1分析使用之結構系統特性 25 4.2結構承受遠域地震之反應 26 4.3結構承受近斷層地震之反應 27 4.4脈衝週期對結構系統之影響 29 第五章 近斷層地震瞬時能量分析 33 5.1地震能量理論 33 5.1.1絕對能量理論 33 5.1.2能量水槽理論 35 5.1.3瞬時輸入能量 36 5.2能量參數對結構系統之影響 39 第六章 結論及建議 43 6.1結論 43 6.2建議 45 參考文獻 47 附表 53 附圖 113

    【1】 林主潔、林克強、洪曉慧、柴俊甫、黃世建、張道明、葉勇凱、劉光晏、劉季宇、蔡克銓,“2008中國汶川地震事件勘災報告”,國家地震工程研究中心研究報告,NCREE-09-011,2009。
    【2】 林克強、邱聰智、姚昭智、郭俊翔、劉光晏,“中國四川420蘆山地震勘災報告”,國家地震工程研究中心研究報告,NCREE-13-006,2013。
    【3】 陳偉松, “鉛心橡膠隔震支承墊與黏性阻尼器組合隔震系統設計”,台灣科技大學碩士論文,2003。
    【4】 內政部營建署,“建築物耐震設計規範及解說”,臺北,2011。
    【5】 Yao, J.T.P., “Concept of Structural Control.”Journal of the Structure Division,ASCE,Vol.98,No.ST7,pp.1567-1574,1972
    【6】 R.I. Skinner, W.H. Robinson and G.H. McVerry, “An introduction to seismic isolation.”Chichester ,England:John Wiley and Sons, 1993
    【7】 F. Naeim and J.M. Kelly, “Design of seismic isolated structures:from theory to practice.”Wiley, New York, 1999
    【8】 T.M. Al-Hussaini, V.A. Zayas and M.C. Constantinou, “Seismic isolation of a multi-story frame structure using spherical sliding isolation system.”Report No.NCEER-94-0007, National Center of Earthquake Engineering Research, University at Buffalo, State University of New York, Buffalo, NY, 1994
    【9】 M. Hamidi, M.H. ElNaggar, A. Vafai and G. Ahmadi, “Seismic isolation of buildings with sliding concave foundation (SCF).”Earthquake Engineering and Structural Dynamics, Vol.32,pp.15-29, 2003
    【10】 T.W. Lin and C.C. Hone, “Base isolation by free rolling rods under basement.”Earthquake Engineering and Structural Dynamics, Vol.22, pp.261-73, 1993
    【11】 S.J. Wang, J.S. Hwang, K.C. Chang, C.Y. Shiau, W.C. Lin, M.S. Tsai, J.X. Hong and Y.H. Yang, “Sloped Multi-roller Isolation Devices for Seismic Protection of Equipment and Facilities.”Earthquake Engineering and Structure Dynamics, Vol.43, No.10, pp.1443-1461, 2014
    【12】 J.F. Hall, T.H. Heaton, M.W. Halling and D.J. Wald, “Near-Source Ground Motion and Its Effects on Flexible Buildings.”EERI Earthquake Spectra, Vol.11, No.4, 1995
    【13】 T.H. Heaton, J.H. Hall, D.J. Wald and M.W. Hallimg, “Response of High-Rise and Base-isolated Buildings to a Hypothetical Mw7.0 Blind Thrust Earthquake.”Science Vol.267, pp.206-217, 1995
    【14】 李明利, “近斷層地震地動特性與非彈性震譜特性之探討”,台灣科技大學碩士論文,2000。
    【15】 Jack W. Baker, “Quantitative Classification of Near-Fault Ground Motions Using Wavelet Analysis.”Bulletin of the Seismological Society of America, Vol.97, No.5, pp.1486-1501, 2007
    【16】 C. Sidney Burrus, Ramesh A. Gopinath, and Haitao Guo;with additional material and programs by Jan E. Odegard and Ivan W. Selesnick, “Introduction to wavelets and wavelets transforms:a primer.”Upper Saddle River, N.J.:Prentice Hall, 1998
    【17】 P.G. Somerville, N.F. Smith, R.W. Graves and N.A. Abrahamson, “Modification of empirical strong ground motion attenuation relations to include the amplitude and duration effects of rupture directivity.”Seismological, Research Letters.68, No.1, 199-222, 1997
    【18】 H.F. Reid, “The Mechanics of the Earthquake, The California Earthquake of April 18, 1906, Report of the State Investigation Commission.”Vol.2, Carnegie Institution of Washington, D.C. 1910
    【19】 E. Kalkan and S.K. Skunnath, “Effects of Fling Step and Forward Directivity on Seismic Response of Buildings.”Earthquake Spectra, Vol.22, No.2, pp.367-390, May, 2006
    【20】 Ronnie Kamai and Norman Abrahamson, “Are Near-Fault Fling Effects Captured in the New NGA West2 Ground Motion Models.”Earthquake Spectra:August 2015, Vol.31, No.3, pp.1629-1645, 2015
    【21】 L.S. Burks and J.W. Baker, “A predictive model for fling-step in near-fault ground motions based on recordings and simulations.”Soil
    Dynamics and Earthquake Engineering, 80(1), 119-126, 2016
    【22】 張正霖,“近斷層地震對遲滯隔震系統之影響”,台灣科技大學碩士論文,2016。
    【23】 胡昌華,“基於MATLAB 6.X的系統分析與設計:小波分析”,西安市:西安電子科技大學出版社,2004。
    【24】 James S. Walker, “A Primer on Wavelets and Their Scientific Applications.”Boca Raton, Fla:Chapman & Hall/CRC, 2008
    【25】 孫延奎,“小波變換與圖像、圖形處理技術”,北京市:清華大學出版社,2012
    【26】 S.K. Shahi, “A probabilistic framework to include the effects of near-fault directivity in seismic hazard”Stanford University, 2013
    【27】 J.K. Howard, C.A. Tracy and R.G. Burns, “Comparing observed and predicted directivity in Near-Source ground motion.”Earthquake Spectra 21 (4), 1063-1092, 2005
    【28】 I. Iervolino and C.A. Cornell, “Probability of occurrence of velocity pulses in near-source ground motions.”Bulletin of the Seismological Society of America 98 (5), 2262-2277, 2008
    【29】 J. Baker, T. Lin, S. Shahi and N. Jayaram,“New ground motion selection procedures and selected motions for the PEER Transportation Rearch Program.”Technical report, Pacific Earthquake Engineering Research Center, Berkeley, California, 2011
    【30】 Uang, Chia-Ming and Bertero, Vitelmo V., “Use of Energy as a Design Criterion in Earthquake-Resistant Design.”Report No. UCB/EERC-88/18, University of California, Berkeley, 1988
    【31】 E.P. Popov, T.S. Yang and C.E. Grigorian, “New Directions in Structural Seismic Design.”Earthquake Spectra, Vol.9, No.4, pp.845-875, 1993
    【32】 A.A. Seleemah, M.C. Constantinou, “Investigation of Seismic Response of Buildings with Linear and Nonliear Fluid Viscous Dampers.”Technical Report NCREE-97-2004, National Center of Earthquake Engineering Research, Buffalo, N.Y., 1997
    【33】 N. Hori, T. Iwasaki, N. Inoue, “Damaging properties of ground motions and response behavior of structures based on momentary input energy response.”12th World Conference on Earthquake Engineering, Paper No.839, CD-ROM, 2000

    QR CODE