簡易檢索 / 詳目顯示

研究生: 黃柏文
PO-WEN HUANG
論文名稱: 高阻尼橡膠隔震支承墊多軸向遲滯行為之試驗與分析研究
Experimental and Analytical Study on Multiaxial Hysteresis Behavior of High-Damping Rubber Bearings
指導教授: 黃震興
Jenn-Shin Hwang
口試委員: 邱建國
Chien-Kuo Chiu
汪向榮
Shiang-Jung Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 243
中文關鍵詞: 高阻尼橡膠隔震支承墊多軸向遲滯行為非比例平面軌跡載重數學分析模型扭轉耦合效應
外文關鍵詞: high-damping rubber bearing, multiaxial hysteresis behavior, non-porportional bilateral loading, mathematical model, torsional coupling effect
相關次數: 點閱:530下載:27
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高阻尼橡膠支承墊為結構隔震系統常用隔震器之一,由於高阻尼橡膠支承墊的材料性質複雜,使得高阻尼橡膠支承墊的力與位移為極複雜之非線性關係,並非能用雙線性分析模型準確模擬。而在過去研究中,數學分析模型在模擬該支承墊受水平單軸向不同形式反覆加載之遲滯行為已能模擬相當良好。而本研究將延伸探討該支承墊受水平雙軸向非比例平面軌跡載重下之行為,於固定之軸向壓力下,利用圓形、八字形與正方形之平面軌跡加載,並探討扭轉耦合效應對於不同平面軌跡下支承墊等效勁度、等效阻尼比以及遲滯行為。
    此外,為進行模擬水平雙軸向非比例平面軌跡載重下之遲滯行為,故本研究以三維材料組合定律為基礎,將水平單軸向數學分析模型延伸至水平雙軸數學分析模型,並藉由水平雙軸向非比例平面軌跡加載試驗結果與數學分析模型之比較以驗證延伸後水平雙軸數學分析模型之合理性,以提升數學分析模型應用於模擬高阻尼橡膠支承墊遲滯行為之準確性。


    High-damping rubber bearing (HDRB) is a common type of seismic isolators. Because of the complex material conpound, its actual hysteresis behavior, however, may not be well represented by the existing bilinear approximation. Many studies have been conducted to analytically model this complexity but most of them focus on the unilateral hysteresis behavior. Hence, in this research, the bilateral hysteresis behavior of HDRB is discussed through the experimental observation and numerical analysis.
    In the expermentat study, the HDRB subjected to unilateral and non-proportional loading, including circular orbit, 8-shape orbit and square orbit, is schemed. Through the comparison between the results under different test conditions, the torsional coupling effect is significant on the mechanical properties and hysteresis behavior of HDRB. In the analytical study, the three dimensional constitute law and plane vector concept are employed to extend the unilateral mathematical model of HDRB to bilateral application. With the decent agreement between the measurement and simulation, it can be concluded that the extended mathematical model is more accurate and applicable for capturing the bilateral hysteresis behavior of HDRB.

    摘要 I Abstract II 目錄 IV 表目錄 VII 圖目錄 I 第一章 緒論 1 1.1研究背景與目的 1 1.2研究重點與內容 3 第二章 高阻尼橡膠支承墊之力學行為 5 2.1前言 5 2.2不同效應對高阻尼橡膠材料力學特性之影響 6 2.2.1最大剪力應變效應之影響 6 2.2.2環境溫度效應之影響 6 2.2.3頻率效應之影響 6 2.2.4軸向力效應之影響 7 2.2.5橡膠軟化效應之影響 9 2.2.6扭轉耦合效應之影響 10 第三章 高阻尼橡膠支承墊分析模型 13 3.1前言 13 3.2 分析模型介紹 13 3.2.1 Hwang 分析模型 13 3.2.2 Abe 分析模型 15 3.2.2.1 水平單軸向 Abe 分析模型 15 3.2.2.2 水平雙軸向 Abe 分析模型 18 3.2.3 修訂Hwang分析模型 20 3.2.3.1 修訂水平單軸向Hwang 分析模型 20 3.2.3.2 修訂水平雙軸向Hwang 分析模型 20 3.4 模型參數識別 21 3.4.1 非線性最小平方差 21 3.4.2 下降式單純形法 23 3.4.3 最佳化方法之比較 24 第四章 多軸向非比例平面載重軌跡試驗結果 27 4.1 試驗裝置 27 4.1.1 試體架設裝置 27 4.1.2 量測儀器 27 4.2 試驗用高阻尼橡膠支承墊 28 4.3 試驗程序與結果 28 4.3.1水平單軸向反覆載重試驗程序及結果 29 4.3.2水平雙軸向平面軌跡加載試驗程序及結果 29 4.4水平單軸向反覆載重與水平雙軸向平面軌跡加載試驗結果比較 38 第五章 數值分析與試驗結果之比較 41 5.1 Abe數值分析結果與試驗結果之比較 41 5.2 修訂Hwang數值分析結果與試驗結果之比較 42 5.3 修訂Hwang數值分析與Abe數值分析之比較 42 5.4 修訂Hwang數值分析預測結果 43 第六章 結論與建議 45 6.1結論 45 6.2建議 46 參考文獻 47 附錄一 205

    【1】Chang KC, Hwang JS, Wang SJ, and Lin WC. 2013. “Recent Research and Application on Seismic Isolation, Energy Dissipation and Vibration Control in Taiwan.” In Proceedings of the 13th World Conference on Seismic Isolation, Energy Dissipation and Active Vibration Control of Structures (13WCSI) & JSSI 20th Anniversary International Symposium, Sendai, Japan, 24–27 September 2013: Paper No. 897097.
    【2】內政部營建署,“建築物耐震設計規範及解說”民國一百年七月。
    【3】CSI (Computers and Structures, Inc.). CSI Analysis Reference Manual for SAP2000, ETABS, SAFE and CSiBridge. Berkeley, California: Computers & Structures.
    【4】Guide Specilcations for Seismic Isolation Design. American Association of State Highway and Transportation Officials, Washington, DC, 1999.
    【5】Manual for Menshin Design of Highway Bridges. Public Works Research Institute, Ministry of Construction of Japan, Tsukuba City, 1991.
    【6】Hwang JS, Ku SW. Analytical Modeling of High Damping Rubber Bearing. Journal of Structural Engineering, ASCE, 1997; 123(8): 1029-1036.
    【7】Hwang JS and Wang JC. Seismic Response Prediction of HDR Bearing Using Fractional Derivative Maxwell Model. Engineering Structures, 1998; 20(9): 849-856.
    【8】Hwang JS, Wu JD, Pan TC, Yang G., “ A Mathematical Hysteretic Model for Elastomeric Isolation Bearing.”Earthquake Engineering and Structural Dynamics, 31(4),2002, pp.771-789.
    【9】吳健達,“高阻尼橡膠支承墊之分析模式”,碩士論文,國立台灣科技大學,1998。
    【10】Pan TC, Yang G. Nonlinear Analysis of Base-Isolated MDOF Structures. Proceedings of the 11th World Conference on Earthquake Engineering, Mexico, 1996.
    【11】Mullins L. Softening of Rubber by Deformation. Rubber Chemistry and Technology, 1969; 42(1): 339-362.
    【12】Damian N.G.,Gregory L.F.,Andrew S.W. (2004). “Bidirectional Modelling High-Damping Rubber Bearings”Journal of Earthquake Engineering,Vol.8,Special Issue 1 (2004) 161-185.
    【13】Abe M, Yoshida J, Fujino Y. Multiaxial Behaviors of Laminated Rubber Bearings and Their Modeling. I: Experimental Study. Journal of Structural Engineering 2004; 130(8): 1119-1132.
    【14】Abe M, Yoshida J, Fujino Y. Multiaxial Behaviors of Laminated Rubber Bearings and Their Modeling. II: Modeling. Journal of Structural Engineering 2004; 130(8): 1133-1144.
    【15】Özdemir, H. (1973). “Nonlinear transient dynamic analysis of yielding structures.” PhD dissertation, University of California, Berkeley, Berkeley, Calif.
    【16】Graesser, E.J., and Cozzarelli, F.A. (1989). “Multidimensional model of hysteretic material behavior for vibration analysis of shape memory energy absorbing devices. Technical Rep.NCEER-89-0018.State University of New York at Buffalo, Buffalo, N.Y.
    【17】江衍弘,“高阻尼橡膠支承墊之之分析模型修訂與驗證試驗研究”,碩士論文,國立台灣科技大學,2014。
    【18】Kulak R.F. and Hughes T.H. (1993). Frequency and Temperature Dependence of High Damping Elastomers, Trans. SmiRT-12, Val. K.
    【19】Osamu Nakano, Hiroaki Nishi, Tadayuki Shirono, Katuhiro Kumagai,“Temperature-Dependency of Base-Isolation Bearing.”
    【20】姚辰安,“使用高阻尼橡膠支承墊之隔震橋梁地震力分析”,碩士論文,國立台灣科技大學,1998。
    【21】林錦偉,“高阻尼橡膠支承墊之動力特性研究”,碩士論文,國立台灣科技大學,1998。
    【22】Koh, C. G., and Kelly, J. M. (1989). ‘‘Viscoelastic stability model for elastomeric isolation bearings.’’ J. Struct. Engrg., ASCE, 115(2), 285–302
    【23】Haringx, J. A. (1948). ‘‘On highly compressible helical springs and rubber rods and their application for vibration-free mountings. I.’’ Philips Res.Rep., 3, 401–449.
    【24】Haringx, J. A. (1949a). ‘‘On highly compressible helical springs and rubber rods and their application for vibration-free mountings. II.’’Philips Res. Rep., 4, 49–80.
    【25】Haringx, J. A. (1949b). ‘‘On highly compressible helical springs and rubber rods and their application for vibration-free mountings. III.’’Philips Res. Rep., 4, 206–220..
    【26】Conversy, F.(no title), Memoire, Anales des Ponts et Chaussies, Vol.4, 1967.
    【27】Holt WL. Rubber Chem. And Technol., 5, 79, 1932.
    【28】Blanchard A F. Breakage of Rubber-Filler Linkages and Energy Dissipation in Stressed Rubber. Journal of Polymer Science, 1954; 14: 355-374.
    【29】Bueche F. Molecular Basis for the Mullins Effects. Journal of Applied Polymer Science, 1960; 4(10): 107-114.
    【30】Kraus G, Childers CW, Rollman KW. Stress Softening in Carbon Black-Reinforced Vulcanizates, Strain Rate and Temperature Effects. Journal of Applied Polymer Science, 1966; 10(2): 229-244.
    【31】Harwood JAC, Mullins L, Payne A R. Stress Softening in Natural Rubber Vulcanizates. Part II. Stress Softening Effects in Pure Gum and Filler Loaded Rubbers. Journal of Applied Polymer Science, 1966; 9(9): 3011-3021.
    【32】Yamamoto M, Minewaki S,Yoneda H,Higashino M. Nonlinear behavior of high-damping rubber bearings under horizontal bidirectional loading: full-scale tests and analytical modeling.Earthquake Engng Struct.Dyn. 2012;41:1845-1860.
    【33】Graesser, E. J., and Cozzarelli, F. A. ~1989. ‘‘Multidimensional models of hysteretic material behavior for vibration analysis of shape memory energy absorbing devices.’’ Technical Rep. NCEER-89-0018, State University of New York at Buffalo, Buffalo, N.Y.
    【34】Madsen, K., Nielsen, H.B., and Tingleff, O., Method for Non-linear Least squares Problems, 2^nd ed., Informatics and Mathematical Modeling, Technical University of Denmark, 2004.
    【35】Kelley, C.T., Iterative Methods for Optimization, SIAM, Frontiers in Applied Mathematics 18, 1999.
    【36】Press, H. W., Flannery, B. P., Teukolsky, S. A., and Vetterling, T. W. (1988). “Numerical recipes in C”, Cambridge University Press, London.

    QR CODE