簡易檢索 / 詳目顯示

研究生: 李育綾
Yu-Ling Lee
論文名稱: 在高效率視訊編碼針對拜爾彩色濾色陣列影像之有效梯度下降彩度抽樣方法
Effective Gradient Descent-Based Chroma Subsampling Method for Bayer CFA Images in HEVC
指導教授: 鍾國亮
Kuo-Liang Chung
口試委員: 范國清
Kuo-Chin Fan
貝蘇章
Soo-Chang Pei
廖弘源
Hong-Yuan Mark Liao
陳建中
Jiann-Jone Chen
鍾國亮
Kuo-Liang Chung
學位類別: 碩士
Master
系所名稱: 電資學院 - 資訊工程系
Department of Computer Science and Information Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 36
中文關鍵詞: 拜爾彩色濾波陣列影像彩度抽樣梯度下降高效率視頻編碼品質品質位元率權衡
外文關鍵詞: Bayer color filter array image, Chroma subsampling, Gradient descent, High Efficiency Video Coding, Quality, Quality-bitrate tradeoff
相關次數: 點閱:241下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 絕大多數商用數位彩色相機使用最廣泛的彩色濾色陣列(CFA)是拜爾模組,其拍攝下來的影像我們稱之為拜爾彩色濾色陣列影像。每個像素中僅有一個色彩值,而紅色、綠色和藍色分別涵蓋的比率為25%、50%和25%。一般HEVC壓縮通常對RGB全採影像做彩度抽樣,而我們取而代之改用拜爾濾色影像做4:2:2或4:2:0彩度抽樣。在解碼端,4:2:2或4:2:0抽樣的彩度影像將使用內插法上抽樣成4:4:4的全彩度影像,再轉成拜爾濾色影像。最後,透過解馬賽克重建出RGB全採影像。根據區塊失真最小化原則,本論文提出在高效率視訊編碼針對拜爾彩色濾色陣列影像之有效梯度下降彩度抽樣(GDCS)方法,與現存的彩度抽樣方法所獲得的重建影像比較,實驗結果顯示我們的方法具有更好的品質與品質位元率權衡優勢。


    The most widely used color filter array (CFA) pattern in commercial digital color cameras is the Bayer pattern, and the captured image is called the Bayer CFA image, in which each pixel contains only one color value and each image consists of 25% red, 50% green, and 25% blue color values. Instead of doing chroma sabsampling of RGB full-color image, we do chroma 4:2:2 or 4:2:0 subsampling of the Bayer CFA images prior to compression. On decoder side, 4:2:2 or 4:2:0 subsampled chroma image will be upsampled to 4:4:4 full chroma image using interpolation. After converting to Bayer CFA image, the RGB full-color image will be restructured through demosaicking. According to the block-distortion minimization principle, in this thesis, we propose an effective gradient descent-based chroma subsampling (GDCS) method for Bayer CFA images. Based on the test Bayer CFA images collected from the Kodak and IMAX datasets, experimental results demonstrated that in High Efficiency Video Coding (HEVC), our GDCS method has better quality and qualitybitrate tradeoff performance of the reconstructed images when compared with the existing chroma subsampling methods.

    指導教授推薦書 I 論文口試委員審定書 II 中文摘要 III Abstract in English IV 誌謝 V Contents VI List of Figures VIII List of Tables X 1 Introduction 1 1.1 Related Works 3 1.2 Contribution 7 2 The Proposed Chroma Subsampling Method for Bayer CFA Images: GDCS 10 2.1 The Convex Property of the Bayer Block-distortion Functions and the Room to Improve Previous Methods for 4:2:0 and 4:2:2 10 2.2 The Proposed Gradient Descent-Based Chroma Subsampling Method: GDCS 13 2.3 Accuracy Analysis 15 3 Experimental Results 18 3.1 Quality Merit 18 3.2 Quality-bitrate Tradeoff and Visual Effect Merits 21 3.3 Execution Time Comparison 24 4 Conclusion 27 Appendix 31

    [1] B. E. Bayer, “Color imaging array,” U.S. Patent 3 971 065, Jul. 20, 1976.
    [2] K. Binmore and J. Davies, Calculus concepts and methods, 2nd ed. Cambridge, U.K.: pp. 190, 2012. Cambridge University Press.
    [3] H. Chen, M. Sun, and E. Steinbach, “Compression of Bayer-pattern video sequences using adjusted chroma subsampling,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 19, no. 12, pp. 1891-1896, Dec. 2009.
    [4] K. L. Chung, Y. H. Huang, and C. H. Lin, “Improved universal chroma 4:2:2 subsampling for color filter array patterns in HEVC,” Signal, Image and Video Processing, vol. 11, no. 6, pp. 1041-1048, Jan, 2017.
    [5] C. Doutre, P. Nasiopoulos, and K. N. Plataniotis, “H.264-based compression of Bayer pattern video sequences,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 18, no. 6, pp. 725-734, Jun. 2008.
    [6] C. Doutre and P. Nasiopoulos, “Modified H.264 intra prediction for compression of video and images captured with a color filter array,” in Proc. 16th IEEE International Conference on Image Process., pp. 3401-3404, Nov. 2009.
    [7] ftp://140.118.175.164/GDCS/code.
    [8] F. Gastaldi, C. C. Koh, M. Carli, A. Neri, and S. K. Mitra, “Compression of videos captured via Bayer patterned color filter arrays, in Proc. 13th European Signal Process Conference, pp. 1-4,Sep. 2005.
    [9] D. Kiku, Y. Monno, M. Tanaka, and M. Okutomi, “Residual interpolation for color image demosaicking,” IEEE International Conference on Image Processing, pp. 2304-2308, Sep. 2013.
    [10] Kodak True Color Image Collection. [Online]. Available: http://r0k.us/graphics/kodak/.
    [11] S.-Y. Lee and A. Ortega, “A novel approach of image compression in digital cameras with a Bayer color filter array,” in Proc. IEEE International Conference Image Process, pp. 482-485, Oct. 2001.
    [12] X. Li and M. T. Orchard, “New edge-directed interpolation,” IEEE Transactions on Image Processing, vol. 10, no. 10, pp. 1521-1527, Oct. 2001.
    [13] C. H. Lin, K. L. Chung, and C. W. Yu, “Novel chroma subsampling strategy based on mathematical optimization for compressing mosaic videos with arbitrary RGB color filter arrays in H.264/AVC and HEVC,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 26, no. 9, pp. 1722-1733, Sep. 2016.
    [14] H. S. Malvar and G. J. Sullivan, “Progressive-to-lossless compression of color-filter-array images using macropixel spectral-spatial transformation,” in Proc. Data Compress. Conference, pp. 3-12, Apr. 2012.
    [15] Spatial Scalability Filters, document ISO/IEC JTC1/SC29/WG11 ITU-T SG 16 Q.6, Jul. 2005.
    [16] S. Wang, K. Gu, S. Ma, and W. Gao, “Joint chroma downsampling and upsampling for screen content image,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 26, no. 9, pp. 1595-1609, Sep. 2016.
    [17] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error measurement to structural similarity,” IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600-612, Apr. 2004.
    [18] L. Zhang, X. Wu, A. Buades, and X. Li, “Color demosaicking by local directional interpolation and nonlocal adaptive thresholding,” Journal of Electronic Imaging, vol. 20, no. 2, pp. 023016-1–023016-16, Jun. 2011.
    [19] Y. Zhang, D. Zhao, J. Zhang, R. Xiong, and W. Gao, “Interpolation-dependent image downsampling,” IEEE Transactions on Image Processing, vol. 20, no. 11, pp. 3291-3296, Nov. 2011.

    無法下載圖示 全文公開日期 2024/05/24 (校內網路)
    全文公開日期 2024/05/24 (校外網路)
    全文公開日期 2024/05/24 (國家圖書館:臺灣博碩士論文系統)
    QR CODE