簡易檢索 / 詳目顯示

研究生: 張廷綱
Ting-Gang Chang
論文名稱: 一個使用 殘值 超取樣 及二元視窗之十六位元 逐次漸進式類比數位轉換器之設計與實現
Design and Implementation of 16-bit SAR ADC with Residue Oversampling and Binary Window Technology
指導教授: 鍾勇輝
Yung-Hui Chung
口試委員: 陳信樹
Hsin-Shu Chen
陳伯奇
Po-Ki Chen
陳筱青
Hsiao-Chin Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 76
中文關鍵詞: 逐次漸進式訊號雜訊比殘值超取樣二階電容交換技術無雜散動態範圍
外文關鍵詞: SAR, SNR, ROSR, Capacitor Swapping, SFDR
相關次數: 點閱:352下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,探討了一個十六位元殘值超取樣搭配二元視窗的十六位元逐次漸進式(successive-approximation register, SAR) 類比數位轉換器(analog-to-digital converter, ADC) 的設計與實現。由於對一個高解析度的類比數位轉換器來說,雜訊與線性度是晶片實現中最大的兩個挑戰。雜訊的部分主要是受到比較器的輸入相關雜訊所主導,因此在此設計當中,使用了低雜訊比較器來降低雜訊進而提升訊號雜訊比 (signal-to-noise ratio, SNR)。除此之外,還加入殘值超取樣 (residue oversampling, ROSR) 的技術,在會做四次的低位元殘值重覆取樣來做平均以得到更好的訊號雜訊比。在線性度方面,則是用了兩種方式來改善:一是二階電容交換技術 (Level-2 Capacitor Swapping) 以及快速二元視窗切換技術 (Fast Binary Window Switching)。二階電容交換技術的精隨在於將電容陣列以特殊的機制來進行交換,進而將電容的不匹配加以平均來得到更好的無雜散動態範圍 (spurious free dynamic range, SFDR)。而快速二元視窗切換技術是以減少不必要的電容切換以提升訊號對雜訊與失真比 (signal-to-noise-and-distortion ratio, SNDR)。
    在台積電180奈米的 CMOS 製程下,本論文設計了一顆十六位元SAR ADC晶片。此晶片的操作電壓為3.3伏特以及1.8伏特,ADC消耗功率為1.6毫瓦,晶片總面積為1.95平方毫米。後模擬結果在取樣頻率為500 k Hz、輸入頻率為奈奎斯特頻率操作下,加入了ROSR技術可得到大約14.5 bits的有效位元數 (effective number of bits, ENOB),SFDR約為100.68 dBc,性能指標 (Schreier Figure of Merit, FoMs) 約為168.58 dB。量測結果在取樣頻率為500 k Hz、輸入頻率為10kHz時,ENOB為11.75 bits,SFDR約為85 dBc,等效的性能指標約為155 dB。


    This paper explores the design and implementation of a 16-bit Successive Approximation Register Analog to Digital Converter (SAR ADC) using a 16-bit residue oversampling (ROSR) combined with a binary window technique. In high-resolution ADCs, noise and linearity are the two major challenges in chip implementation. The noise component is mainly dominated by the input-related noise of the comparator. Therefore, in this design, low-noise comparators are used to reduce noise and improve the signal-to-noise ratio (SNR). Additionally, the residue oversampling (ROSR) technique is employed, which involves four consecutive samplings and conversions with averaging on the lower-weighted capacitors to achieve better performance.
    Regarding linearity, two techniques are employed: Level-2 Cap Swapping and Fast Binary Window. The essence of Level-2 Cap Swapping is to switch the capacitors associated with the most significant bit (MSB) and the second-largest weight using a special switching mechanism. This averaging of capacitor mismatches helps to achieve a better spurious-free dynamic range (SFDR). On the other hand, Fast Binary Window uses the polarity of the first comparison result and combines it with subsequent comparison results to determine if the capacitor array needs to be switched, thus reducing unnecessary switching and improving the signal-to-noise and distortion ratio (SNDR).
    In this paper, a SAR ADC chip is designed in a TSMC 180-nanometer CMOS process. The operating voltages of the chip are 3.3 volts and 1.8 volts, with a power consumption of 1.6 milliwatts for the ADC core. The total chip area is 1.95 square millimeters. The post-simulation results at a sampling frequency of 500 kHz and input frequency at the Nyquist frequency show that incorporating the ROSR functionality yields an effective number of bits (ENOB) of approximately 14.5 bits, SFDR of approximately 100.68 dBc, and a figure of merit (FoM) of approximately 168.58 B. The measurement results show that when the sampling frequency is 500 kHz and the input frequency is 10 kHz, the ENOB is 11.75 bits, the SFDR is about 85 dBc, and the equivalent performance index is about 155 dB.

    論文摘要 I Abstract III 致謝 V 目錄 VI 表格目錄 IX 圖目錄 X 第一章 序論 1 1-1. 研究目的與動機 1 1-2. 章節說明 3 第二章 文獻回顧與背景理論 4 2-1. 奈奎斯特理論 4 2-2. 一般SAR ADC架構 6 2-3. 低雜訊ADC實現方式 7 2-4. 電容不匹配 9 2-5. 電容交換技術 11 第三章 殘值超取樣與快速二元視窗切換技術 14 3-1. 殘值超取樣技術 (ROSR) 14 3-2. 二階電容交換技術 16 3-3. 快速二元視窗切換技術 21 第四章 16b SAR ADC實現 24 4-1. 理論分析 25 4-2. Matlab 行為輔助分析 27 4-2-1 快速二元視窗切換技術 27 4-2-2 殘值超取樣搭配二階電容交換技術 28 4-3. 取樣開關 30 4-4. 低雜訊比較器 33 4-5. 電容式數位類比轉換器 35 4-6. SAR 控制邏輯 39 4-6-1 非同步控制邏輯 39 4-6-2 數位電路 40 4-7. 參考電壓緩衝器 42 4-8. 電路佈局 45 4-9. 模擬結果 48 4-10.量測結果 52 第五章 結論與未來展望 57 5-1 結論 57 5-2 未來展望 57 參考文獻 58

    [1] C. C. Lee, C. -Y. Lu, R. Narayanaswamy and J. B. Rizk, "A 12b 70MS/s SAR ADC with digital startup calibration in 14nm CMOS," 2015 Symposium on VLSI Circuits (VLSI Circuits), Kyoto, Japan, 2015, pp. C62-C63, doi: 10.1109/VLSIC.2015.7231328.
    [2] C. -W. Hsu, L. -J. Chang, C. -P. Huang and S. -J. Chang, "A 12-bit 40-MS/s calibration-free SAR ADC," 2017 IEEE International Symposium on Circuits and Systems (ISCAS), Baltimore, MD, USA, 2017, pp. 1-4, doi: 10.1109/ISCAS.2017.8050307.
    [3] Y. -H. Chung, M. -H. Wu and H. -S. Li, "A 12-bit 8.47-fJ/Conversion-Step Capacitor-Swapping SAR ADC in 110-nm CMOS," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 62, no. 1, pp. 10-18, Jan. 2015, doi: 10.1109/TCSI.2014.2340583.
    [4] J. Fredenburg and M. Flynn, "A 90MS/s 11MHz bandwidth 62dB SNDR noise-shaping SAR ADC," 2012 IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 2012, pp. 468-470, doi: 10.1109/ISSCC.2012.6177094.
    [5] C. -C. Liu and M. -C. Huang, "28.1 A 0.46mW 5MHz-BW 79.7dB-SNDR noise-shaping SAR ADC with dynamic-amplifier-based FIR-IIR filter," 2017 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 2017, pp. 466-467, doi: 10.1109/ISSCC.2017.7870463.
    [6] S. Li, B. Qiao, M. Gandara and N. Sun, "A 13-ENOB 2nd-order noise-shaping SAR ADC realizing optimized NTF zeros using an error-feedback structure," 2018 IEEE International Solid - State Circuits Conference - (ISSCC), San Francisco, CA, USA, 2018, pp. 234-236, doi: 10.1109/ISSCC.2018.8310270.
    [7] J. Shen et al., "A 16-bit 16-MS/s SAR ADC With On-Chip Calibration in 55-nm CMOS," in IEEE Journal of Solid-State Circuits, vol. 53, no. 4, pp. 1149-1160, April 2018, doi: 10.1109/JSSC.2017.2784761.
    [8] C. P. Hurrell, C. Lyden, D. Laing, D. Hummerston and M. Vickery, "An 18 b 12.5 MS/s ADC With 93 dB SNR," in IEEE Journal of Solid-State Circuits, vol. 45, no. 12, pp. 2647-2654, Dec. 2010, doi: 10.1109/JSSC.2010.2075310.
    [9] A. Bannon, C. P. Hurrell, D. Hummerston and C. Lyden, "An 18 b 5 MS/s SAR ADC with 100.2 dB dynamic range," 2014 Symposium on VLSI Circuits Digest of Technical Papers, Honolulu, HI, USA, 2014, pp. 1-2, doi: 10.1109/VLSIC.2014.6858371.
    [10] Y. -H. Chung, C. -H. Tien and Q. -F. Zeng, "A 102dB-SFDR 16-bit Calibration-Free SAR ADC in 180-nm CMOS," 2019 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), Bangkok, Thailand, 2019, pp. 5-8, doi: 10.1109/APCCAS47518.2019.8953163.
    [11] C. -C. Liu, S. -J. Chang, G. -Y. Huang and Y. -Z. Lin, "A 10-bit 50-MS/s SAR ADC With a Monotonic Capacitor Switching Procedure," in IEEE Journal of Solid-State Circuits, vol. 45, no. 4, pp. 731-740, April 2010, doi: 10.1109/JSSC.2010.2042254.
    [12] Chi-Hung Lin and K. Bult, "A 10-b, 500-MSample/s CMOS DAC in 0.6 mm/sup 2/," in IEEE Journal of Solid-State Circuits, vol. 33, no. 12, pp. 1948-1958, Dec. 1998, doi: 10.1109/4.735535.
    [13] Kok Lim Chan and I. Galton, "A 14b 100MS/s DAC with Fully Segmented Dynamic Element Matching," 2006 IEEE International Solid-State Circuits Conference - Digest of Technical Papers, San Francisco, CA, USA, 2006, pp. 2390-2399, doi: 10.1109/ISSCC.2006.1696302.
    [14] C. -H. Kuo and T. -H. Kuo, "Capacitor-Swapping Cyclic A/D Conversion Techniques With Reduced Mismatch Sensitivity," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 55, no. 12, pp. 1219-1223, Dec. 2008, doi: 10.1109/TCSII.2008.2009963.
    [15] M. -H. Wu, Y. -H. Chung and H. -S. Li, "A 12-bit 8.47-fJ/conversion-step 1-MS/s SAR ADC using capacitor-swapping technique," 2012 IEEE Asian Solid-State Circuits Conference (A-SSCC), Kobe, Japan, 2012, pp. 157-160, doi: 10.1109/IPEC.2012.6522649.
    [16] S. Haenzsche, S. Henker and R. Schüffny, "Modelling of capacitor mismatch and non-linearity effects ini charge redistribution SAR ADCs," Proceedings of the 17th International Conference Mixed Design of Integrated Circuits and Systems - MIXDES 2010, Wroclaw, Poland, 2010, pp. 300-305.
    [17] C. -C. Liu et al., "A 10b 100MS/s 1.13mW SAR ADC with binary-scaled error compensation," 2010 IEEE International Solid-State Circuits Conference - (ISSCC), San Francisco, CA, USA, 2010, pp. 386-387, doi: 10.1109/ISSCC.2010.5433970.
    [18] Y. -H. Chung, Y. -S. Lin and Q. -F. Zeng, "A 12-bit 20-MS/s SAR ADC With Fast-Binary-Window DAC Switching in 180nm CMOS," 2018 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), Chengdu, China, 2018, pp. 34-37, doi: 10.1109/APCCAS.2018.8605686.
    [19] K. C. Koay, S. S. Chong and P. K. Chan, "A FVF based output capacitorless LDO regulator with wide load capacitance range," 2013 IEEE International Symposium on Circuits and Systems (ISCAS), Beijing, China, 2013, pp. 1488-1491, doi: 10.1109/ISCAS.2013.6572139.

    無法下載圖示 全文公開日期 2025/08/09 (校內網路)
    全文公開日期 2025/08/09 (校外網路)
    全文公開日期 2025/08/09 (國家圖書館:臺灣博碩士論文系統)
    QR CODE