簡易檢索 / 詳目顯示

研究生: 吳偉志
Wei-Chih Wu
論文名稱: 影響羧酸基腐蝕抑制劑抗蝕因子之研究
Study on Factors Affecting Corrosion Resistance of Carboxylated Corrosion Inhibitor
指導教授: 陳君弢
Chun-Tao Chen
口試委員: 張大鵬
Ta-Peng Chang
鄭安
An Cheng
陳君弢
Chun-Tao Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 219
中文關鍵詞: 腐蝕抑制劑水灰比氯離子含量直流極化法交流阻抗法脈衝電流法重量損失
外文關鍵詞: corrosion inhibitor, water-to-cement ratio, chloride content, linear polarization, AC impedance, galvanostatic current, weight loss
相關次數: 點閱:195下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 於現今鋼筋混凝土結構物中,一般採用熱浸鍍鋅、鋅粉塗裝或環氧樹脂鋼筋作為鋼筋之防蝕策略,但由於上述材料成本高昂,或者因混凝土本身開裂、氯離子侵入之因素而導致無法發揮預期之抗蝕效能。因此,本研究使用成本相對較低且使用上較為方便之腐蝕抑制劑,探討影響其抗蝕效能之因子。試驗過程中,首先以參照CNS 12457探討腐蝕劑用量與抗蝕效能之關係,接著以竹節鋼筋製作試體後,以交流阻抗法、直流極化法及脈衝電流法量測鋼筋之極化阻抗與腐蝕電流密度,進而計算腐蝕速率與腐蝕量,以此評估腐蝕抑制劑之抗蝕效能。根據試驗結果,在腐蝕抑制劑用量12 kg/m3下,當鋼筋浸泡於含氯離子之高鹼性環境中仍會發生腐蝕,鹽水濃度由0%增加至3.5%時,實際腐蝕量增加54%。就含鋼筋之水泥砂漿試體而言,在相同腐蝕抑制劑用量(10 kg/m3)下,砂漿水灰比為0.6時,所測得之腐蝕電位較水灰比為0.4時低,且腐蝕量增加67-107%。水灰比0.4且鹽分含量0.2%時,所測得之腐蝕電位較鹽分含量為0.04%時低,且腐蝕量增加90-101%。因此,保護層的水灰比與鹽分含量皆會影響腐蝕抑制劑之抗蝕效能。若未來欲評估腐蝕抑制劑之抗蝕效能,可改採較接近現地腐蝕環境的條件進行。建議將試驗材料更換為竹節鋼筋、降低鹽水濃度及提高pH值,並量測鋼筋之重量損失。於鋼筋浸鹽水試驗中,以交流阻抗法與直流極化法並行量測其腐蝕速率。於內埋鋼筋之砂漿試體,可以脈衝電流法與交流阻抗法並行量測。


    In reinforced concrete structures, the hot-dip galvanized, zinc coated, or epoxy coated reinforcements are commonly used as corrosion protection strategies for the reinforcing steel. However, due to the high cost of these materials, the concrete cracking or the ingress of the chloride ions, the expected corrosion resistance cannot be achieved. Therefore, in this study, a corrosion inhibitor with a relatively low cost and convenience in use was used to explore the factors affecting its anti-corrosion performance. During the study, the relationship between the amount of the corrosion inhibitor and the its anti-corrosion was first investigated in accordance to CNS 12457. Then, the polarization impedance and corrosion current density of the steel bars were measured by AC impedance, linear polarization and galvanostatic current. The corrosion rate and the corrosion amount were calculated. The test results showed that, with the corrosion inhibitor dosage of 12 kg/m3, corrosion still occurred when the reinforcement was immersed in a highly alkaline environment containing chlorine ions, and the amount of the corrosion was increased by 54% when the chloride concentration was increased from 0% to 3.5%. For the reinforcement embedded in the cement mortar with a corrosion inhibitor dosage of 10 kg/m3, the specimen with a cement-to-water (w/c) of 0.6 had a lower corrosion potential and higher amount of corrosion by 67-107% than that with a w/c of 0.4. With a w/c of 0.4, the specimen with a chloride content of 0.2% had a lower corrosion potential than that with a chloride content of 0.04% and its has a increased amount of corrosion by 90-101%. Therefore, both the w/c and the chloride content in the mortar protection layer are influencing factors. To evaluate the anti-corrosion of the corrosion inhibitor, it is suggested that the test parameters can be close to the exposure conditions in practice. A deformed bar can be used in a test solution with a low chloride content and high pH. Its weight loss can be measured and its corrosion rate can be measured by linear polarization and AC impedance during the test. For the mortar specimen with an embedded reinforcement, the corrosion rate can be measured through the AC impedance and the galvanostatic current.

    摘要 I Abstract III 致謝 V 總目錄 VII 表目錄 XI 圖目錄 XXI 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 2 1.3 研究方法與流程 2 第二章 文獻回顧 5 2.1 腐蝕機理 5 2.1.1 腐蝕之定義 5 2.1.2 腐蝕之型態 6 2.1.3 電化學腐蝕 8 2.1.4 混凝土中鋼筋的腐蝕機理 10 2.2 鋼筋混凝土用腐蝕抑制劑 11 2.2.1 腐蝕抑制劑之種類與機理 11 2.2.2 腐蝕抑制劑的效能評估 14 2.3 鋼筋腐蝕之量測技術 15 2.3.1 開路電位法(Open Circuit Potential Method, OCP) 15 2.3.2 交流阻抗法(Electrochemical Impedance Spectroscopy, EIS) 15 2.3.3 直流極化法(Linear Polarization Method, LPR) 16 2.3.4 脈衝電流法 18 2.3.5 實際腐蝕量量測 19 2.4 感應耦合電漿原子發射光譜法 19 第三章 試驗計畫 31 3.1 試驗變數 31 3.1.1 變數說明 31 3.1.2 編碼說明 33 3.2 試驗材料 34 3.3 試驗配比 37 3.4 試驗設備 37 3.5 試體製作 42 3.5.1 鋼棒浸鹽水試驗之試體 42 3.5.2 混凝土中鋼棒加速鏽蝕試驗 43 3.5.3 鋼筋浸鹽水試驗 44 3.5.4 含鋼筋之砂漿試體 45 3.6 試驗方法 46 3.6.1 鋼棒浸鹽水試驗 46 3.6.2 混凝土中鋼棒之加速腐蝕試驗 46 3.6.3 電化學量測試驗 48 3.6.4 鋼筋腐蝕量計算 50 3.6.5 感應耦合電漿原子發射光譜儀(ICP-OES) 51 3.6.6 X光繞射儀分析(XRD) 51 3.6.7 掃描式電子顯微鏡(SEM)微觀分析 51 第四章 結果與討論 83 4.1 鋼棒浸鹽水試驗 83 4.2 混凝土中鋼棒加速鏽蝕試驗 85 4.3 鋼筋浸鹽水試驗 86 4.3.1 添加腐蝕抑制劑之影響(不含氯離子) 86 4.3.2 鹽水濃度之影響 89 4.4 砂漿中鋼筋鏽蝕試驗 94 4.4.1 純水泥砂漿 94 4.4.2 含鹽分之水泥砂漿 96 4.4.3 含腐蝕抑制劑之水泥砂漿 100 4.5 感應耦合電漿原子發射光譜儀分析結果 103 4.6 X光繞射分析結果 104 4.7 掃描式電子顯微鏡試驗結果 105 4.7.1 未添加腐蝕抑制劑 105 4.7.2 添加腐蝕抑制劑 106 第五章 結論與建議 211 5.1結論 211 5.1.1 鋼棒於鹽水中之腐蝕 211 5.1.2 混凝土中鋼筋(鋼棒)之腐蝕 211 5.1.3 竹節鋼筋於鹽水中之腐蝕 211 5.1.4 砂漿中竹節鋼筋之腐蝕 212 5.1.5 微觀分析 212 5.2建議 213 參考文獻 215 附錄A、鋼筋浸泡於無氧高鹼性溶液中之試驗結果 219

    [1] Ahmad, Z. (2006a). Principles of Corrosion Engineering and Corrosion Control. Oxford, Butterworth-Heinemann:1-8.
    [2] Ahmad, Z. (2006b). Principles of Corrosion Engineering and Corrosion Control. Oxford, Butterworth-Heinemann:121.
    [3] Al-Negheimish, A., Hussain, R. R., Alhozaimy, A. and Singh, D. D. N. (2021). “Corrosion performance of hot-dip galvanized zinc-aluminum coated steel rebars in comparison to the conventional pure zinc coated rebars in concrete environment.” Construction and Building Materials 274:121921.
    [4] Al-Otaibi, M. S., Al-Mayouf, A. M., Khan, M., Mousa, A. A., Al-Mazroa, S. A. and Alkhathlan, H. Z. (2014). “Corrosion inhibitory action of some plant extracts on the corrosion of mild steel in acidic media.” Arabian Journal of Chemistry 7(3):340-346.
    [5] Alonso, C., Andrade, C., Argiz, C. and Malric, B. (1996). “Na2PO3F as inhibitor of corroding reinforcement in carbonated concrete.” Cement and Concrete Research 26(3):405-415.
    [6] Arya, C., Buenfeld, N. R. and Newman, J. B. (1990). “Factors influencing chloride-binding in concrete.” Cement and Concrete Research 20(2):291-300.
    [7] ASTM C876-15 (2015). Standard Test Method for Corrosion Potentials of Uncoated Reinforcing Steel in Concrete. ASTM International, West Conshohocken, PA.
    [8] Broomfield, J. P. (1997). Corrosion of Steel in Concrete: Understanding, Investigation and Repair. London, UK, E & FN Spon.
    [9] Cabrera, J. G. (1996). “Deterioration of concrete due to reinforcement steel corrosion.” Cement & Concrete Composites 18(1):47-59.
    [10] Dariva, C. G. and Galio, A. F. (2014). “Corrosion Inhibitors – Principles, Mechanisms and Applications.” In (Ed.), Developments in Corrosion Protection. London, IntechOpen.
    [11] Chang, J. J., Yeih, W. and Tsai, C. L. (2002). “Enhancement of bond strength for epoxy-coated rebar using river sand.” Construction and Building Materials 16(8):465-472.
    [12] CNS 1230 (2005). 試驗室混凝土試體製作及養護法, 中華民國國家標準, 經濟部標準檢驗局,台北市
    [13] CNS 12456 (1988). 鋼筋混凝土用防鏽劑檢驗法, 中華民國國家標準, 經濟部標準檢驗局,台北市。
    [14] CNS 12457 (1988). 鋼筋混凝土用防鏽劑檢驗法, 中華民國國家標準, 經濟部標準檢驗局,台北市。
    [15] Deo, R. N., Birbilis, N. and Cull, J. P. (2014). “Measurement of corrosion in soil using the galvanostatic pulse technique.” Corrosion Science 80: 339-349.
    [16] Elsener, B., Andrade, C., Gulikers, J., Polder, R., Raupach, M. (2003). “Half-cell potential measurements-Potential mapping on reinforced concrete structures.” Materials and Structures 36(7):461-471.
    [17] Fontana, M. G. (1986). Corrosion Engineering. New York, McGraw-Hill Education:39.
    [18] Haynes, W. M. (Ed.) (2016). CRC Handbook of Chemistry and Physics (97th ed.). Boca Raton, CRC Press:8-23 - 8-28.
    [19] Heusler, K., Landolt, D. and Trasatti, S. (1989). “Electrochemical corrosion nomenclature.” Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 274(1-2):345-348.
    [20] Hou, X., Amais, R. S., Jones, B. T., Donati, G. L. (2006). Inductively Coupled Plasma Optical Emission Spectrometry. Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation. Hoboken, John Wiley & Sons.
    [21] Hu, J., Zhu, Y., Hang, J., Zhang, Z., Ma, Y., Huang, H., Yu, Q. and Wei, J. (2021). “The effect of organic core–shell corrosion inhibitors on corrosion performance of the reinforcement in simulated concrete pore solution.” Construction and Building Materials 267:121011.
    [22] Jones, D. A. (1996). Principles and Prevention of Corrosion. Upper Saddle River, Prentice Hall.
    [23] Klinghoffer, O. (1995). “In situ monitoring of reinforcement corrosion by means of electrochemical methods.” Nordic Concrete Research 95(1):5-7.
    [24] Lee, H.-S., Saraswathy, V., Kwon, S.-J. and Karthick, S. (2018). “Corrosion inhibitors for reinforced concrete: A review.” Corrosion inhibitors, principles and recent applications:95-120.
    [25] Luo, L. and Schutter, G. D. (2008). “Influence of corrosion inhibitors on concrete transport properties.” Materials and structures 41(9):1571-1579.
    [26] Mehta, P. K. (1986). Concrete: Microstructure, Properties and Materials. USA, McGraw-Hill Companies.
    [27] Newton, C. and Sykes, J. M. (1998), “A galvanostatic pulse technique for investigation of steel corrosion in concrete.” Concrete Science 28(11):1151-1074.
    [28] Pollard, A. M., Batt, C. M., Stren, B., Young, S. M. M. (2007). Analytical chemistry in archaeology. Massachusetts, Cambridge University Press.
    [29] Qiao, G. and Ou, J. (2007). “Corrosion monitoring of reinforcing steel in cement mortar by EIS and ENA.” Electrochimica Acta 52(28):8008-8019.
    [30] Revie, R. W. and Uhlig, H. H. (2008). Corrosion and corrosion control: an introduction to corrosion science and engineering. Hoboken, John Wiley & Sons.
    [31] Rodriguez, P., Ramirez, E. and Gonzalez, J. A. (1994). “Methods for Studying Corrosion in Reinforced Concrete.” Cement and Concrete Research 46(167):81-90.
    [32] Saraswathy, V. and Song, H.-W. (2007). “Improving the durability of concrete by using inhibitors.” Building and environment 42(1):464-472.
    [33] Smith, W. F., Hashemi, J. (2006). Foundations of Materials Science and Engineering. New York, McGraw-Hill Education.
    [34] Stern, M. (1958). “A Method for Determining Corrosion Rates from Linear Polarization Data.” Corrosion 14(9):60-64.
    [35] Vyrides, I., Rakanta, E., Zafeiropoulou, T., and Batis, G. (2013). “Efficiency of amino alcohols as corrosion inhibitors in reinforced concrete.” Open Journal of Civil Engineering 3(2):1-8.
    [36] 中國土木水利工程學會 (2012). 混凝土工程設計規範與解說(土木401-96)。. 台北市,科技圖書股份有限公司:E-8.
    [37] 王繼敏 (1992). 不鏽鋼與金屬腐蝕. 台北市, 科技圖書股份有限公司.
    [38] 何明錦 (2007). 鋼結構建築防鏽蝕工法之研究.內政部建築研究所研究報告. 未出版. https://www.abri.gov.tw/News_Content_Table.aspx?n=807&s=38407
    [39] 何志偉 (2009). 熱軋鋼筋及水淬鋼筋腐蝕率量測研究, 碩士論文, 土木工程與防災科技研究所, 國立高雄應用科技大學.
    [40] 努麗燕娜, 王保峰 (2007). 實驗電化學. 北京, 化學工業出版社.
    [41] 吳靖賢 (2014). 影響混凝土中鋼筋腐蝕量測之因子探討, 碩士論文, 營建工程系, 國立臺灣科技大學.
    [42] 李釗, 陳桂清 (1997). 混凝土材料劣化損壞評估與改善研究. 蘇澳港防波堤改善工程規劃第二子計畫. 交通部基隆港務局蘇澳工程處.
    [43] 林金面 (2011). 工程材料. 新北市, 文笙書局股份有限公司.
    [44] 柯賢文 (2014). 腐蝕及其防制. 台北市, 全華圖書股份有限公司:5-75.
    [45] 洪乃豐 (2002). “鋼筋混凝土橋樑的防護與鋼筋阻銹劑.” 公路 4:94-97.
    [46] 紀茂傑 (2002). 混凝土耐久性影響因素及評估方法之研究, 博士論文, 河海工程學系, 國立海洋大學.
    [47] 馬川忠 (2017). 摻和料與阻銹劑對混凝土中鋼筋鏽蝕的影響研究, 碩士論文, 哈爾濱工業大學.
    [48] 黃兆龍. (1990). 混凝土鋼筋腐蝕性質與行為探討. 台北市, 鋼筋混凝土結構物防蝕技術研討會.
    [49] 楊仲家, 黃然, 葉爲忠, 卓盆揚 (1996). “鋼筋混凝土樑構件腐蝕後力學行為之研究.” 防蝕工程 10(1):49-56.
    [50] 鲜祺振 (1995). 金屬腐蝕及其控制. 台北市, 財團法人徐氏基金會.
    [51] 范家瑋 (2018). 水泥砂漿披覆對鋼筋腐蝕量測之影響, 碩士論文, 營建工程系, 國立臺灣科技大學.
    [52] 劉佑璿 (2020). 受拉後鋼筋之腐蝕行為研究, 碩士論文, 營建工程系, 國立臺灣科技大學.
    [53] 劉國雄, 鄭晃忠, 李勝隆, 林樹均, 葉均蔚 (2013). 工程材料科學. 新北市,全華科技圖書股份有限公司.

    無法下載圖示 全文公開日期 2027/09/29 (校內網路)
    全文公開日期 2027/09/29 (校外網路)
    全文公開日期 2027/09/29 (國家圖書館:臺灣博碩士論文系統)
    QR CODE