簡易檢索 / 詳目顯示

研究生: 許哲銘
Che-Ming - Hsu
論文名稱: 電化學交流阻抗法應用於泡沫滅火性能之研究
Application Research of Electrochemical Impedance Spectroscopy in the Foam Fire Extinguishment Performance
指導教授: 林慶元
Ching-Yuan Lin
口試委員: 鄭政利
Cheng-Li Cheng
彭雲宏
Yeng-Horng Perng
沈子勝
Tzu-Sheng Shen
郭詩毅
Shih-Yi Kuo
學位類別: 博士
Doctor
系所名稱: 設計學院 - 建築系
Department of Architecture
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 163
中文關鍵詞: 電化學交流阻抗法泡沫原液泡沫泡沫滅火系統發泡倍率25%還原時間
外文關鍵詞: electrochemical impedance spectroscopy method, foam liquid concentrate, foam, foam fire extinguishing system, foam expansion value, 25% drain time
相關次數: 點閱:223下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 室內停車場車輛一旦發生火災,燃燒快速及延燒迅速,嚴重威脅人命及財物,故各國依規定須設置泡沫滅火系統。目前有關泡沫原液之品質管控,世界各國係以實際放射泡沫來確認,皆要耗費相當的時間、金錢及人力。

    本研究係世界上首次運用電化學交流阻抗分析儀於泡沫原液的測試,可從「頻率―導納」關係圖形掌握泡沫原液之狀況,作為判斷泡沫效能之依據,試驗結果證明這是一種可行的試驗方法。

    研究進行某一品牌泡沫原液不同濃度比例之研究,依序以體積比將泡沫原液與水混合,分別進行100%(泡沫原液)、90%(10%水+90%泡沫原液)、80%(20%水+80%泡沫原液)、60%(40%水+60%泡沫原液)、40%(60%水+40%泡沫原液)及20%(80%水+20%泡沫原液)之交流阻抗分析量測。同一品牌進行加水稀釋進行不同濃度之泡沫滅火系統實際放射試驗,以觀察各種濃度之發泡膨脹情況,共計進行九次實際放射試驗,經比對交流阻抗分析量測及實際放射試驗,得到90%以上之濃度係為此品牌可接受之範圍,也因此可得知泡沫原液維持一定濃度,係為能否有效滅火的關係因子。

    本研究提供之檢測方法可清楚判斷泡沫原液之品質,可以分成兩類檢測方法,第一種為原液之品牌辨識,第二種為原液之品質控制,說明如下:
    (1) 第一種(原液之品牌辨識):可將販售者提供之泡沫原液導納值,紀錄於電腦資料庫中,日後當要再確定泡沫原液之品牌時,可使用先前之電腦資料以為比對判斷之依據。
    (2) 第二種(原液之品質控制):當泡沫原液品牌已知時,但不知其品質是否能符合規定(有可能是保存溫度或年限影響),可使用本方法進行導納值量測,當導納值低於90%以下曲線圖形時(不同品牌有不同之可接受濃度,要另進行試驗,本研究僅以某一品牌為例),不視為合格或得繼續使用之泡沫原液,需要再進行泡沫實際放射試驗,反之,當導納值高於90%以上曲線圖形時,則視為安全之泡沫原液,無須再進行泡沫實際放射試驗。

    本研究希望以此發展出更為簡便、正確、有效、經濟的泡沫原液檢驗替代方式,提供政府部門抽查及專業技術人員檢修之新方法,以節省時間、金錢及人力,並兼顧保護地球環境之普世責任。


    Once a vehicle in indoor parking lot catches fire, it will burn quickly and spread rapidly, and then cause a serious threat to human life and property, so each country requires that building owners should set up a foam fire extinguishing system in accordance with regulations. So far, countries worldwide confirm the method of quality control of related foam liquid concentrates based on actual foam spraying, which spends considerable time, money and manpower.
    This research is the first in the world that conducts a test on foam liquid concentrates by using electrochemical AC impedance analyzer to grasp the condition of foam liquid concentrates from “Frequency - admittance” relation diagram; the test result might be a basis for judging the performance of foam liquid concentrates. The test results show that this is a feasible test method.
    The concentrates with different concentration ratios of one brand were tested, according to volume ration, the foam liquid concentrates were mixed with water to conduct respectively the following AC impedance tests: 100% of foam liquid concentrate, 10% of water mixed with 90% of foam liquid concentrate, 20% of water mixed with 80% of foam liquid concentrate, 40% of water mixed with 60% of foam liquid concentrate, 60% of water mixed with 40% of foam liquid concentrate, and 80% of water mixed with 20% of foam liquid concentrate. All of AC impedance were analyzed and measured; the same brand was diluted with water to obtain different concentrations for actual foam extinguishing spraying test. Through nine tests, the foaming situations from different concentrations were recorded; comparing the results from AC impedance tests and actual foam extinguishing spraying test, we believed that the tolerance scope of this brand was 90% concentration; also we knew that a degree of concentration of foam liquid concentrate was a major factor to effectively extinguish fire.
    The inspection method that this research offers can clearly identify the quality of foam liquid concentrate; there are two applications, the first is brand recognition, second one is quality control of foam liquid concentrate. The explanations are as follows:
    (1) Brand Recognition for foam liquid concentrate: Set the admittance value offered by seller into database of computer so as to become a comparing foundation. Once brand identification is necessary, the database can be used as a comparison.
    (2) Quality control of foam liquid concentrate: When a brand is confirmed but its quality remains uncertain (for example: violation of regulations such as storage temperature or shelf life influence), this quality control method may be used for measuring admittance value. When an admittance value is lower than 90% of curve diagram (ex: different brand with different acceptable concentrations which should do a test. this research takes one brand for example.), the quality of foam liquid concentrate will not be seen as qualified for using, and an actual spray foam test should be conducted; in contrast, when an admittance value is higher than 90% of curve diagram, the quality of foam liquid concentrate is seen as safe and no need for actual spraying test.
    This research hopes to develop a simpler, accurate, effective and economical inspection method for quality control of foam liquid concentrates, the finding which may be a new solution for government checking and technician repairing. Prospectively, the new solution may save time, money and manpower, furthermore, demonstrate the universal responsibility of protecting global environment.

    第一章 緒論 1 1.1. 研究動機與背景 1 1.1.1. 研究動機 1 1.1.2. 研究背景 3 1.2. 研究目的 7 1.2.1. 假說提出 7 1.2.2. 研究目的 7 1.3. 名詞定義 8 1.4. 研究流程 10 第二章 文獻回顧 11 2.1. 泡沫滅火系統之泡沫滅火性能測試探討與替代性方法 12 2.1.1 泡沫滅火系統於消防安全設備之定位 12 2.1.2 泡沫滅火系統之泡沫滅火性能測試探討 31 2.2. 電化學交流阻抗理論基礎、文獻探討與替代性方法提出 37 2.2.1理論基礎 37 2.2.2文獻探討 43 2.2.3文獻運用於電化學交流阻抗法替代泡沫滅火性能測試構想 45 第三章 研究設計與量測試驗 49 3.1. 研究設計 49 3.2. 電化學交流阻抗法 52 3.3. 泡沫實際放射試驗 54 第四章 實驗過程分析與結果應用 57 4.1. 實驗過程與分析 57 4.1.1 交流阻抗實驗與分析 57 4.1.2 泡沫實際放射實驗與分析 61 4.2. 實際應用分析 63 4.3. 量測模式確認 64 4.4. 驗證模式研擬 65 4.5. 小結 67 第五章 結論及建議 69 5.1. 結論 69 5.2. 建議 70

    [1] C.-Y. Lin, The burning behavior of motorcycles, Journal of Chinese Institute of Engineers, Vol. 23(1), pp. 9-18, 2000.
    [2] M.-J. Tsai, C.-W. Wu and C.-Y. Lin, Development and application of a large scale fire products collector, Journal of the Chinese Society of Mechanical Engineers, Vol. 25 (3), pp. 267-276, 2004.
    [3] M. Shipp and M. Spearpoint, Measurements of the severity of fires involving private motor vehicles, Fire and Materials, Vol. 19(3), pp. 143-151, 1995.
    [4] Ying-Ji Chuang, Chieh-Hsin Tang, Po-Hung Chen and Ching-Yuan Lin, Experimental investigation of burning scenario of loaded 3.49-ton pickup trucks, Journal of Applied Fire Science, Vol. 14(1), pp. 27-46, 2005.
    [5] J. Mangs and O. Keski-Rahkonen, Characterization of the fire behavior of a burning passenger car. Part I: car fire experiments, Fire Safety Journal, Vol. (23)1, pp. 17-35, 1994.
    [6] J. Mangs and O. Keski-Rahkonen, Characterization of the fire behavior of a burning passenger car. Part II: Parametrization of measured rate of heat release curves, Fire Safety Journal, Vol. (23)1, pp. 37-49, 1994.
    [7] B. Merci and M. Shipp, Smoke and heat control for fires in large car parks: Lessons learnt from research? Fire Safety Journal, Vol. 57, pp. 3-10, 2013.
    [8] B. Zhao and J. Kruppa, Structural behaviour of an open car park under real fire scenarios, Fire and Materials, Vol. 28 (2-4), pp. 269-280, 2004.
    [9] L. Noordijk and T. Lemaire, Modelling of fire spread in car parks, Heron, Vol. 50(4), pp. 209-218, 2005.
    [10] Chin-Hsing Huang, Ying-Ji Chuang, Chieh-Hsin Tang and Ching-Yuan Lin, Experimental study on spread of fires started by scooters in the sheltered arcade of arcade-style buildings, Journal of Applied Fire Science, Vol. 16(3), pp. 235-247, 2006.
    [11] C. Fang, B.A. Izzuddin, A.Y. Elghazouli, D.A. Nethercot, Simplified energy-based robustness assessment for steel-composite car parks under vehicle fire, Engineering Structures, Vol. 49, pp. 719-732, 2013.
    [12] Standard for Installation of Fire Safety Equipments Based on Use and Occupancy,Announcement of the Ministry of the Interior,Taiwan,Date issued: March 13, 1996.
    [13] J. Cotner, Our department has class a foam; Now what? Fire Engineering, Vol. 160(7), PP. 121-122, 2007.
    [14] 胡龍騰、黃瑋瑩、潘中道合譯,Ranjit Kumar 原著,研究方法,學富文化事業有限公司,台北,2000年8月初版一刷。78頁。
    [15] 韓乾,研究方法原理,五南圖書出版股份有限公司,台北,2008年11月初版一刷。85頁。
    [16] 韓乾,研究方法原理,五南圖書出版股份有限公司,台北,2008年11月初版一刷。119及124頁。
    [17] M.F. Mabrook and M.C. Petty, A novel technique for the detection of added water to full fat milk using single frequency admittance measurements, Sensors and Actuators, B: Chemical, Vol. 96(1-2), pp. 215-218, 2003.
    [18] M.F. Mabrook and M.C. Petty, Application of electrical admittance measurements to the quality control of milk, Sensors and Actuators, B: Chemical, Vol. 84(2-3), pp. 136-141, 2002.
    [19] M.F. Mabrook and M.C. Petty, Effect of composition on the electrical conductance of milk, Journal of Food Engineering, Vol. 60(3), pp. 321-325, 2003.
    [20] M.F. Mabrook, A.M. Darbyshire and M.C. Petty, Quality control of dairy products using single frequency admittance measurements, Measurement Science and Technology, Vol. 17(2), pp. 275-280, 2006.
    [21] C.J. Felice, R.E. Madrid, J.M. Olivera, V.I. Rotger and M.E. Valentinuzzi, Impedance microbiology: quantification of bacterial content in milk by means of capacitance growth curves, Journal of Microbiological Methods, Vol. 35(1), pp. 37-42, 1999.
    [22] J.P. Zheng, P.J. Cygan, T.R. Jow, Hydrous ruthenium oxide as an electrode material for electrochemical capacitors, Journal of the Electrochemical Society, Vol. 142(8), pp. 2699-2703, 1995.
    [23] V. Dyakonov, D.Godovsky, J. Meyer, J. Parisi , C.J. Brabec, N.S. Sariciftci and J.C.Hummelen, Electrical admittance studies of polymer photovoltaic cells, Synthetic Metals, Vol. 124(1), pp. 103-105, 2001.
    [24] R. Casalini, M. Kilitziraki, D. Wood, M.C. Petty, Sensitivity of the electrical admittance of a polysiloxane film to organic vapours, Sensors and Actuators, B: Chemical, Vol. 56(1), pp. 37-44, 1999.
    [25] Ping-Ju Lin and Ying-Ji Chuang, Determination of SSD Condition of Fine Aggregates Using AC Impedance Spectroscopy, Materials and Structures, Vol. 18(4), pp. 309-316.
    [26] P. Aberg, I. Nicander, J. Hansson, P. Geladi, U. Holmgren and S. Ollmar, Skin cancer identification using multifrequency electrical impedance - A potential screening tool, IEEE Transactions on Biomedical Engineering, Vol. 51(12), pp. 2097-2102, 2004.
    [27] S. Takashima, K. Asami, R.E. Yantorno, Determination of electrical admittances of biological cells, Journal of Electrostatics, Vol. 21(2-3), pp. 225-244, 1988.
    [28] J. Sadowski, Estimation of changes in renal tissue electrolytes from measurements of electrical admittance: application in the rat, Acta physiologica Polonica, Vol. 36 (5-6), pp. 339-344, 1985.
    [29] Standard for Low-, Medium-, and High-Expansion Foam 2010 Edition. NFPA 11, National Fire Protection Association (NFPA), Quincy, MA, USA, 2010.
    [30] S.A. Magrabi, B.Z. Dlugogorski and G.J. Jameson, A comparative study of drainage characteristics in AFFF and FFFP compressed-air fire-fighting foams, Fire Safety Journal, Vol. 37(1), pp. 21-52, 2002.
    [31] 泡沫滅火藥劑技術規格省令,平成20年2008年3月31日總務省令第44號。
    [32] Foam Equipment and Liquid Concentrates, UL 162, UL Inc., Northbrook, IL, USA, 1994.
    [33] Fire extinguishing media. Foam concentrates. Specification for medium expansion foam concentrates for surface application to water-immiscible liquids, BS EN1568-1, BSI, London, UK, 2000.
    [34] Fire extinguishing media. Foam concentrates. Specification for high expansion foam concentrates for surface application to water-immiscible liquids, EN1568-2, BSI, London, UK, 2000.
    [35] Fire extinguishing media – Foam concentrates – Part 3: Specification for low expansion foam concentrates for surface application to water-immiscible liquids, BS EN1568-3, BSI, London, UK, 2000.
    [36] Fire extinguishing media – Foam concentrates – Part 2: Specification for medium and high expansion foam concentrates for top application to water-immiscible liquids, ISO 7203-2, ISO, Geneva, Switzerland, 2011.
    [37] Approval Directions for Foam Head , Announcement of the Ministry of the Interior ,Taiwan, Date issued: Nov 30, 2001。台灣泡沫噴頭認可基準,內政部2001年10月30日發佈。
    [38] 台北市政府消防局,安全檢查行政指導手冊,台北市政府消防局,台北,99年12月。221頁。
    [39] 陳弘毅,消防學,鼎茂圖書出版股份有限公司,台北,92年9月三版。15-13頁。
    [40] 專門職業及技術人員特種考試消防設備人員考試錄取人員訓練教材,泡沫滅火系統設計實務,內政部消防署,台北,93年。1、2、3頁。
    [41] 專門職業及技術人員特種考試消防設備人員考試錄取人員訓練教材,泡沫滅火系統設計實務,內政部消防署,台北,93年。3〜5、13〜16、79〜80、97〜101頁。
    [42] 謝乃賢,電世界的奇葩--話說電化學,曉園出版社有限公司,台北,2002年9月一版。6、22、27〜28、50〜52、53〜56頁。
    [43] 陳銘博譯,電路學,世茂出版有限公司,台北,2012年7月一版。19、21〜26、28〜74、80〜82、99頁。
    [44] 郭泰麟,2010年,離子液體液晶製備擬固態電解質應用於染料敏化太陽能電池,國立中山大學光電工程學系,碩士論文。
    [45] 陳佑任,2008年,鋅摻雜鑭鍶鈷鐵氧化物於固態氧化物燃料電池陰極之特性研究,國立台灣科技大學機械工程系,碩士論文。
    [46] 古明祥,2007年,金屬添加物對碳系超級電容器特性之影響,大同大學材料工程研究所,碩士論文。
    [47] 趙士維,2005年,固態核磁共振於有機無機複合式電解質之結構鑑定與動力學研究,國立中央大學化學研究所,碩士論文。
    [48] 林宜蔚,2010年,應用電阻抗分析於耐火塗料品質查驗之研究,國立台灣科技大學建築研究所,碩士論文。
    [49] 胡龍騰、黃瑋瑩、潘中道合譯,Ranjit Kumar 原著,研究方法,學富文化事業有限公司,台北,2000年8月初版一刷。99頁。
    [50] 胡龍騰、黃瑋瑩、潘中道合譯,研究方法,學富文化事業有限公司,台北,2000年8月初版一刷。166頁。
    [51] 韓乾,研究方法原理,五南圖書出版股份有限公司,台北,2008年11月初版一刷。9頁。
    [52] M.R. Awode, Introduction to electrochemistry, Mumbai, Himalaya Pub. House, 2010.

    無法下載圖示 全文公開日期 2022/01/06 (校內網路)
    全文公開日期 2027/01/06 (校外網路)
    全文公開日期 2027/01/06 (國家圖書館:臺灣博碩士論文系統)
    QR CODE