簡易檢索 / 詳目顯示

研究生: 李浩廷
Haw-Tyng Li
論文名稱: 考慮施工效率及學習曲率之重複性工程排程最佳化
Repetitive Scheduling Optimization Considering Construction Efficiency and Learning Curve Effect
指導教授: 楊亦東
I-Tung Yang
口試委員: 李欣運
Hsin-Yun Lee
楊智斌
Jyh-Bin Yang
楊亦東
I-Tung Yang
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 171
中文關鍵詞: 重複性工程閒置時間半成品時間施工排程學習曲率工期成本權衡線性規劃基因演算法粒子群最佳化演算法
外文關鍵詞: Repetitive construction, Idle time, WIP time, Construction scheduling, Learning curve, Time-Cost trade off problem, Linear programming, Genetic algorithm, Particle swarm optimization
相關次數: 點閱:221下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在探討垂直型重複性工程在初期規劃階段的工項方案決策及施工排程,研究的目標有三:(1)建立數學模型進行工期及成本最佳化 (2)比較兩超啟發式演算法的差異(3)產出結果進行決策分析。藉由學習曲率模型可了解人類重複執行類似的事物,可提升對該事物的熟練度,進而縮短工作時間,本研究納入此理論,用以表示施工團隊在重複性工程中,單位生產率隨著施作單元數量增加而提升。
    工程專案多採用最早開始時間排程,然而在重複性工程中,工程專案施作的工項數量繁多,且前後置關係複雜,若採用此排程方法可能使工項因等待前置工項完成而產生閒置時間,增加閒置時間成本,乃至於得到較不經濟的結果。由於重複性工程每個單元的完成時間皆相當長,而過長的半成品時間可能導致單元內已完成施作的部分遭到損壞,進而重工增加半成品時間成本。故本研究使用整數線性規劃,調整每個工項在每個單元的開始時間,求得最低的總閒置時間成本及總半成品時間成本總和的施工排程,並比較最低總成本施工排程與對應工項方案的最早、最晚開始時間排程的總成本差異。工程專案中每個工項依據人力數量、施作工法及機具效率等等有不同數量的可能方案,須準確地分配各工項應採取的方案才可使工程專案資源不浪費,並且能減少公司財務支出。本研究提出混合整數線性規劃與多目標超啟發式演算法(Integer Linear Programming – MultiObjective Metaheuristic, ILP – MOM)進行工期及成本最佳化,透過混合整數線性規劃與快速非支配分類基因演算法(NSGA II)及多目標粒子群最佳化演算法(MOPSO),將求得的柏拉圖最適解繪製工期—成本權衡圖進行決策分析,在三種不同的情境下,決策者應選擇何種工項方案以滿足最佳效益。最後比較兩種超啟發式演算法於本研究的分析結果表現,利用三種指標決定何者演算法較佳:(1)演算法的運算時間 (2)非支配解數量 (3)非支配解面積占比。經比較發現, MOPSO在三項指標中皆較NSGA II優。


    The objectives of this study include (1) to develop a model for time and cost optimization (2) to compare two multi objective metaheuristic algorithm; and (3) to develop the optimal Time-Cost trade-off diagram for project decision analysis. The learning curve effect explains that the work efficiency can be improved by repeatedly performing similar work, thereby shortening the working time. The present study consider the learning curve effect as the unit productivity of a construction team in a repetitive project would increase as the number of units increases.
    Scheduling activities at the earliest start time is often used in construction projects. Practical repetitive construction projects involve a large number of repeated activities and complicated precedence relationships. The earliest start time may lead to unnecessary idleness because crews have to wait before the preceding crews to finish the job. Since the completion time of each unit of repetitive construction project is quite long, the excessively long work-in-progress time may cause damage to the completed part of the unit, and then rework increases the cost. Therefore, this study uses integer linear programming to adjust the start time of each activity in each unit in order to find the lowest total cost construction schedule and compare the total cost difference between the earliest start time and latest start time schedules of the corresponding activity options.
    This study proposes a framework, an integrationg of Integer Linear Programming and MultiObjective Metaheuristic (ILP – MOM), to optimize two objective functions: project duration and total cost. Two popular multiobjective optimization tools are implemented in ILP-MOM: NSGA II (Non-dominated Sorting Genetic. Algorithm II) and MOPSO (Multibjective Particle Swarm Optimization) . The optimization result is the Pareto front, plotted as a time-cost trade-off for decision analysis, which can help decision makers choose the optimal schedule. The decisiuon-making process is illustrated in various scenrior analyses.
    Finally, the study compares NSGA II and MOPSO in the ILP-MOM framework using two cases. The comparision metrics are: ILP–MOM(1) the computation time of the algorithm (2) the number of non-dominated solutions and (3) the percentage of non-dominated solution area. It is found that MOPSO is suprerior to NSGA II in the case studies.

    第一章 緒論 1.1 研究動機 1.2 研究目的 1.3 研究流程 1.4 論文架構 第二章 文獻回顧 2.1 重複性工程 2.2 學習曲率 2.3 線性規劃 2.4基因演算法 2.5 粒子群最佳化演算法 第三章 模式建構 3.1 問題定義 3.2 模型架構 3.3 整數線性規劃 3.4 快速非支配分類基因演算法 3.5 多目標粒子群最佳化演算法 第四章 案例分析 4.1 基本假設 4.2 案例一分析 4.3 案例二分析 第五章 結論與未來研究 5.1 結論 5.2 未來研究方向 第六章 參考文獻

    [1] 楊子毅. (2010). 應用粒子群演算法調校層級分析法之權重矩陣以協助選商決策 國立臺灣科技大學]. 台北市. https://hdl.handle.net/11296/93uvzj
    [2] 行政院公共工程委員會頒布「公共建設工程經費估算編列手冊總則篇」(民國107年)
    [3] Aboelmagd, Y. M. (2018). Linear programming applications in construction sites. Alexandria engineering journal, 57(4), 4177-4187.
    [4] Altuwaim, A., & El-Rayes, K. (2018). Minimizing duration and crew work interruptions of repetitive construction projects. Automation in Construction, 88, 59-72.
    [5] Coello, C. C., & Lechuga, M. S. (2002). MOPSO: A proposal for multiple objective particle swarm optimization. Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No. 02TH8600),
    [6] Couto, J., & Teixeira, J. (2005). Using linear model for learning curve effect on highrise floor construction. Construction Management and Economics, 23(4), 355-364.
    [7] Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on evolutionary computation, 6(2), 182-197.
    [8] Eberhart, R., & Kennedy, J. (1995). A new optimizer using particle swarm theory. MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science,
    [9] Everett, J. G., & Farghal, S. (1994). Learning curve predictors for construction field operations. Journal of Construction Engineering and Management, 120(3), 603-616.
    [10] Harris, R. B., & Ioannou, P. G. (1998). Scheduling projects with repeating activities. Journal of Construction Engineering and Management, 124(4), 269-278.
    [11] He, W., Shi, Y., & Kong, D. (2019). Optimization Model Calculation of Construction Cost and Time Based on Genetic Algorithm. IOP Conference Series: Earth and Environmental Science, 242, 062044. https://doi.org/10.1088/1755-1315/242/6/062044
    [12] Huang, S., Tian, N., Wang, Y., & Ji, Z. (2016). Multi-objective flexible job-shop scheduling problem using modified discrete particle swarm optimization. Springerplus, 5(1), 1432. https://doi.org/10.1186/s40064-016-3054-z
    [13] Ioannou, P. G., & Yang, I.-T. (2016). Repetitive scheduling method: Requirements, modeling, and implementation. Journal of Construction Engineering and Management, 142(5), 04016002.
    [14] Ipsilandis, P. G. (2007). Multiobjective linear programming model for scheduling linear repetitive projects. Journal of Construction Engineering and Management, 133(6), 417-424.
    [15] Johnston, D. W. (1981). Linear scheduling method for highway construction. Journal of the Construction Division, 107(2), 247-261.
    [16] Ozcan-Deniz, G., Zhu, Y., & Ceron, V. (2012). Time, cost, and environmental impact analysis on construction operation optimization using genetic algorithms. Journal of management in engineering, 28(3), 265-272.
    [17] Papadaki, I. N., & Chassiakos, A. P. (2016). Multi-objective construction site layout planning using genetic algorithms. Procedia Engineering, 164, 20-27.
    [18] Peigen, Z. C. R. Y. L., & Xinyu, S. (2007). BILEVEL GENETIC ALGORITHM FOR THE FLEXIBLE JOB-SHOP SCHEDULING PROBLEM [J]. Chinese Journal of Mechanical Engineering, 4.
    [19] Ralli, P., Panas, A., Pantouvakis, J.-P., & Karagiannakidis, D. (2020). Investigation and Comparative Analysis of Learning Curve Models on Construction Productivity: The Case of Caisson Fabrication Process. Journal of Engineering, Project & Production Management, 10(3).
    [20] Riley, D., & Sanvido, V. (1997). Space planning for mechanical, electrical, plumbing and fire protection trades in multi-story building construction. Proceedings of the 1997 5th ASCE Construction Congress,
    [21] Saad, D. A., Masoud, M., & Osman, H. (2021). Multi-objective optimization of lean-based repetitive scheduling using batch and pull production. Automation in Construction, 127, 103696.
    [22] Sacks, R., & Partouche, R. (2009). Production flow in the construction of tall buildings. Construction Research Congress 2009: Building a Sustainable Future,
    [23] Santos, A., Powell, J. A., & SARSCHAR, M. (2000). Reduction of work-in-progress in the construction environment. INTERNATIONAL GROUP FOR LEAN CONSTRUCTION, 6.
    [24] Stradal, O., & Cacha, J. (1982). Time space scheduling method. Journal of the Construction Division, 108(3), 445-457.
    [25] Thomas, H. R., Mathews, C. T., & Ward, J. G. (1986). Learning curve models of construction productivity. Journal of Construction Engineering and Management, 112(2), 245-258.
    [26] Wright, T. P. (1936). Factors affecting the cost of airplanes. Journal of the aeronautical sciences, 3(4), 122-128.
    [27] Yang, I.-T. (2008). Utility-based decision support system for schedule optimization. Decision Support Systems, 44(3), 595-605.
    [28] Yang, I.-T., & Chou, J.-S. (2011). Multiobjective optimization for manpower assignment in consulting engineering firms. Applied Soft Computing, 11(1), 1183-1190.
    [29] Yang, I.-T., & Ioannou, P. G. (2001). Resource-driven scheduling for repetitive projects: A pull-system approach. Proceedings of the 9th International Group for Lean Construction Conference, Singapore,
    [30] Zhang, C., Li, P., Rao, Y., & Li, S. (2005). A new hybrid GA/SA algorithm for the job shop scheduling problem. European Conference on Evolutionary Computation in Combinatorial Optimization,

    無法下載圖示 全文公開日期 2024/07/29 (校內網路)
    全文公開日期 2024/07/29 (校外網路)
    全文公開日期 2024/07/29 (國家圖書館:臺灣博碩士論文系統)
    QR CODE