簡易檢索 / 詳目顯示

研究生: 賴佐宜
Tso-I Lai
論文名稱: 在合作式感知無線電網路中聯合中繼端選擇與子載波配對及功率分配之混合型基因演算法
Blended Genetic Algorithm for Joint Subcarrier Pairing and Power Allocation with Relay Selection in Cognitive Networks
指導教授: 方文賢
Wen-hsien Fang
口試委員: 丘建青
Chien-ching Chiu
賴坤財
Kuen-tsair Lay
陳郁堂
Yie-tarng, Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 66
中文關鍵詞: 正交分頻多工系統感知無線電解碼傳遞合作式網路功率分配子載波配對中繼端選擇混合整數規劃基因演算法
外文關鍵詞: OFDM systems, cognitive radio, decode-and-forward cooperative networks, power allocation, subcarrier pairing, relay selection, mixed integer programming, genetic algorithm
相關次數: 點閱:404下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 正交分頻多工為現今一種相當有潛力的無線網路傳輸技術,搭配合作式網路,提供使用者之間互相協助傳遞訊息至目的端來形成一分散式天線陣列,進而提供空間分集增益。此外,基於已知各傳輸路徑的通道狀態,選擇合適的中繼端來協助傳輸,並考量在有限的頻譜與不干擾主用戶訊號過多的情形下,做適當的資源分配,將能有效提升系統整體效能。

    本論文考慮一個正交分頻多工暨合作式感知無線電解碼傳遞網路,並在共同頻譜存取機制上做資源分配,目的是為了在對主要使用者干擾適當管理下,最大化次要使用者的最佳傳輸率以及整體能源效率最佳化。其中最佳化問題包含了子載波配對、功率分配與中繼端選擇,因此最佳化問題形成一混合整數規劃問題。為了在合理的成本下解決此複雜的混合整數規劃問題,本論文提出了一新穎的混合型基因演算法,在混合型基因演算法中,染色體可以切割成三個部分,第一部分為整數型的中繼端選擇基因,第二部分為整數型的子載波配對基因,第三部分為實數型的功率分配基因。本論文亦提出新式的交配運算及突變運算,以適應所增加的主要使用者干擾限制式。除此之外,本論文同時也設計了一新型之染色體初始化方法,包含凸面最佳化方法產生的基準染色體與實數基因演算法產生的染色體,使問題能收斂至最佳值。相關的模擬結果顯示,在不同的限制考量下,混合型基因演算法相較於其他論文的方法而言,擁有更加優越的系統效能與較低的複雜度。


    The orthogonal frequency division multiplexing (OFDM) systems are a promising communication technique. Meanwhile, cooperative networks are an emerging transmission technique in which a distributed antenna array can be created and provide the spatial diversity gains by relaying each other's messages to the destination based on the channel state information. Also, cognitive radio (CR) networks can enhance the spectrum efficiency.

    This thesis presents an efficient algorithm for joint subcarrier pairing, power allocation, and relay selection in an OFDM-based cognitive decode-and-forward (DF) multi-relay network. Such a joint consideration entails a mixed integer programming (MIP) problem. To efficaciously resolve this complicated MIP problem, we propose a novel blended genetic algorithm (BGA), which tackles all of these three issues as a whole and is free of extra assumptions made in previous works to simplify the problem. In our BGA, every chromosome is divided into a number of integer strings for relay selection and subcarrier pairing, and a real number string for power allocation. Moreover, new crossover and mutation operations are devised for the new chromosomes as well as to manage the interference to the primary users (PUs). A new initialization scheme based on a properly chosen baseline chromosome and a real GA is also addressed, so that the BGA converges more likely to the optimum. Conducted simulations show that the developed BGA provides superior performance, yet with lower computations compared with the main state-of-the-art works.

    第一章 緒論 1 1.1 引言 ...........................1 1.2 研究動機與目的 .....................3 1.3 內容章節概述 ......................4 第二章 相關背景回顧 5 2.1 合作式通訊網路 .....................5 2.1.1 子載波配對 ...................8 2.1.2 中繼端選擇機制 ................8 2.1.3 感知無線電 ...................9 2.2 合作式多中繼端感知無線電暨正交分頻多工解碼傳遞網路 ..........................11 2.3 相關數學方法介紹 ...................13 2.3.1 對偶分解 ....................13 2.3.2 注水法 ......................14 2.4 基因演算法 .......................15 2.4.1 基因演算法的基本原理 ............17 2.4.2 實數基因演算法 ................20 2.5 結論 ...........................21 第三章 在合作式感知無線電網路中聯合中繼端選擇與子載波配對及功率分配之混合型基因演算法 22 3.1 問題陳述 ........................22 3.2 聯合中繼端選擇與子載波配對及功率分配之混合型基因演算法 .......................24 3.2.1 新式初始化方法 ................25 3.2.2 混合型基因演算法總覽 ............29 3.3 結論 ...........................34 第四章 模擬分析與複雜度討論 35 4.1 模擬分析 ........................35 4.2 複雜度討論 .......................38 4.3 結論 ...........................39 第五章 結論與未來展望 46 5.1 結論 ...........................46 5.2 未來展望 ........................47

    [1] A. Sendonaris, E. Erkip, and B. Aazhang, “User cooperation diversity-part I: System description” and “User cooperation diversity-part II: Implementation aspects and performance analysis,” IEEE Trans. Commun., vol. 51, no. 11, pp. 1927-1948, Nov. 2003.

    [2] J. Laneman, D. Tse, and G. Wornell, “Cooperative diversity in wireless net- works: Efficient protocols and outage behavior,” IEEE Trans. Inform. Theory, vol. 50, no. 12, pp. 3062-3080, Dec. 2004.

    [3] Y. Shen, S. Wang, and Z. Wei, “Joint subchannel pairing and power control for cognitive radio networks with amplify-and-forward relaying,” The Scientific World Journal, June 2014.

    [4] D. Tse and P. Viswanath, Fundamentals of Wireless Communication. Cam- bridge University Press, 2005.

    [5] J. Mitola and G.Q. Maquire Jr., “Cognitive radio: Making software radios more personal,” IEEE Pers. Commun., vol. 6, no. 4, pp. 13-18, Aug. 1999.

    [6] E. Hossain and V. K. Bhargava, ed. Cognitive Wireless Communication Net- works. Springer, 2007.

    [7] P. Kaligineedi, G. Bansal, and V. K. Bhargava, “Power loading algorithms for OFDM-based cognitive radio systems with imperfect sensing,” IEEE Trans. Wireless Commun., vol. 11, no. 12, pp. 4225-4230, Dec. 2012.

    [8] Y.-C. Liang, K.-C. Chen, G.Y. Li, and P. Mahonen, “Cognitive radio network- ing and communications: an overview,” IEEE Trans. Vehicular Technology, vol. 60, no. 7, pp. 3386-3407, Sep. 2011.

    [9] Y. Li, W. Wang, J. Kong, and M. Peng, “Subcarrier pairing for amplify- and- forward and decode-and-forward OFDM relay links,” IEEE Commun. Lett., vol. 13, no. 4, pp. 209-211, Apr. 2009.

    [10] Y. Liu and W. Chen, “Limited-feedback-based adaptive power allocation and subcarrier pairing for OFDM DF relay networks with diversity,” IEEE Trans. Vehicular Technology, vol. 61, no. 6, pp. 2559-2571, July 2012.

    [11] M. Shaat and F. Bader, “Asymptotically optimal subcarrier matching and power allocation for cognitive relays with power and interference constraints,” in Proc. IEEE Wireless Commun. and Networking Conference, pp. 663-668, Apr. 2012.

    [12] H. Boostanimehr and V. K. Bhargava, “Selective subcarrier pairing and power allocation for DF OFDM relay systems with perfect and partial CSI,” IEEE Trans. Wireless Commun., vol. 10, no. 12, Dec. 2011.

    [13] X. Li, Q. Zhang, G. Zhang, and J. Qin, “Joint power allocation and subcarrier pairing for cooperative OFDM AF multi-relay networks,” IEEE Commun. Lett., vol. 17, no. 5, pp. 872-875, May 2013.

    [14] G. Bansal, M. J. Hossain, V. K. Bhargava, and T. Le-Ngoc, “Subcarrier and power allocation for OFDMA-based cognitive radio systems with joint overlay and underlay spectrum access mechanism,” IEEE Trans. Vehicular Technology, vol. 62, no. 3, pp. 1111-1122, Mar. 2013.

    [15] C.-N. Hsu, H.-J. Su, and P.-H. Lin, “Joint subcarrier pairing and power al- location for OFDM transmission with decode-and-forward relaying,” IEEE Trans. Signal Proce., vol. 59, no. 1, pp. 399-414, Jan. 2011.

    [16] T. Wang, Y. Fang, and L. Vandendorpe, “Power minimization for OFDM transmission with subcarrier-pair based opportunistic DF relaying,” IEEE Commun. Lett., vol. 17, no. 3, pp. 471-474, Mar. 2013.

    [17] E. Beres and R.Adve, ”Selection cooperation in multi-source cooperative net- works,” IEEE Trans. Wireless Commun., vol. 7, pp. 118-127, Jan. 2008.

    [18] M. F. Uddin, C. Assi, and A. Ghrayeb, “Joint relay assignment and power allocation for multicast cooperative networks,” IEEE Commun. Lett., vol. 16, no. 3, pp. 368-371, Mar. 2012.

    [19] L. Li, X. Zhou, H. Xu, G. Li, D. Wang, and A. Soong, “Simplified relay selection and power allocation in cooperative cognitive radio systems,” IEEE Trans. Wireless Commun., vol. 10, no. 1, pp. 33-36, June 2011.

    [20] M. Shaat and F. Bader, “Asymptotically optimal resource allocation in OFDM-based cognitive networks with multiple relays,” IEEE Trans. Wireless Commun., vol. 11, no. 3, Mar. 2012.

    [21] M. Ge and S. Wang, “On the resource allocation for multi-relay cognitive radio systems,” in Proc. IEEE International Conference on Commun. (ICC), pp. 1585-1589, 2014.

    [22] H. W. Kuhn, “The Hungarian method for the assignment problem,” in 50 Years of Integer Programming 1958-2008. Springer Berlin Heidelberg, pp. 29-47, 2010.

    [23] J. H. Holland, Genetic Algorithms. Sci. Am. 1992.

    [24] L. Cen and Zhu.-L. Yu, “Linear aperiodic array synthesis using an improved genetic algorithm,” IEEE Trans. Antennas and Propagation, vol. 60, no. 2, pp. 895-902, Feb. 2012.

    [25] L. D. H. Sampaio, T. Abrão, B. A. Angélico, M. F. Lima, M. L. Proenca Jr., and P. J. E. Jeszensky, “Hybrid heuristic-waterfilling game theory approach in MC-CDMA resource allocation,” Applied Soft Computing, vol. 12, pp. 1902- 1912, July 2012.

    [26] C.-J. Huang, C.-T. Guan, H.-M. Chen, Y.-W. Wang, S.-Y. Chien, J.-J. Jian, and J.-J. Liao, “A self-adaptive joint bandwidth allocation scheme for het- erogeneous wireless networks,” Applied Soft Computing, vol. 37, pp. 156-165, Dec. 2015.

    [27] R. Gholami, M. Shahabi, and M.-R. Haghifam, “An efficient optimal capacitor allocation in DG embedded distribution networks with islanding operation capability of micro-grid using a new genetic based algorithm,” Int’l Journal
    of Electrical Power and Energy Systems, vol. 71, pp. 335-343, Oct. 2015.

    [28] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge Cambridge University Press, 2004.

    [29] K. J. R. Liu, A. K. Sadek, W.Su, and A. Kwasinski, Cooperative Communi- cations and Networking. Cambridge University Press, 2009.

    [30] Y. Jing and H. Jafarkhani, “Single and multiple relay selection schemes and their achievable diversity orders,” IEEE Trans. Wireless Commun., vol. 8, pp. 1414-1423, Mar. 2009.

    [31] W. Yu and R. Lui, “Dual methods for nonconvex spectrum optimization of multicarrier systems,” IEEE Trans. Commun., vol. 54, no. 7, pp. 1310-1322, July 2006.

    [32] S. Boyd and A. Mutapcic, “Subgradient methods,” Lecture Notes of EE364b, Stanford University, Stanford, CA, Spring quarter 2007-2008.

    [33] D. Yuan, S. Xu, and H. Zhao, “Distributed primal–dual subgradient method for multiagent optimization via consensus algorithms,” IEEE Trans. Systems, vol. 41, no. 6, pp. 1715-1724, Aug. 2011.

    [34] T. Yalcinoz and H. Altum, “Power economic dispatch using a hybrid genetic algorithm,” IEEE Power Eng. Rev., vol. 21, pp. 59-60, 2001.

    [35] H.-Y. Lu and W.-H. Fang, “Joint transmit/receive antenna selection in MIMO systems based on the priority-based genetic algorithm,” IEEE Antennas and Wireless Propagation Lett., vol. 6, pp. 588-591, Dec. 2007.

    [36] H.-S. Lang, S.-C. Lin, and W.-H. Fang, “Subcarrier pairing and power al- location with interference management in cognitive relay networks based on genetic algorithms,” to appear in IEEE Trans. Vehicular Technology.

    QR CODE