簡易檢索 / 詳目顯示

研究生: 林嘉男
Chia-nan Lin
論文名稱: 溶膠凝膠法合成NiO/TiO2之 p-n接面光觸媒之研究
Synthesis of p-n Junction Photocatalyst NiO/TiO2 by Sol-gel Method for Enhancement of Photocatalytic Activity
指導教授: 顧洋
Young Ku
口試委員: 蔣本基
Pen-chi Chiang
曾堯宣
Yao-hsuan Tseng
郭俞麟
Yu-lin Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 124
中文關鍵詞: NiO/TiO2p-n接面二極體溶劑溶膠凝膠法光觸媒催化
外文關鍵詞: NiO/TiO2, p-n junction, Solvents, Sol-gel method, Photocatalysis
相關次數: 點閱:718下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 利用溶膠凝膠法製備TiO2和NiO/TiO2之p-n接面光觸媒,分別探討溶劑和摻雜氧化鎳對製備出的觸媒之顆粒結構、特性及光催化活性的影響。當使用不同醇類當溶劑所製備出的二氧化鈦光觸媒,發現銳鈦礦結晶量隨著所使用醇類的碳鏈越長而減少。這是因為使用長碳鏈的醇類當溶劑在溶膠凝膠的過程中其水解和縮合的速度較慢而所導致。而且使用長碳鏈的醇類當溶劑所製備出的二氧化鈦顆粒凝聚較為嚴重,導致比表面積相對較小。因此實驗結果證明用短碳鏈的醇類當溶劑所製備出的二氧化鈦光觸媒有較佳的光催化活性。
    然而在NiO/TiO2之p-n接面光觸媒,可得知當摻雜氧化鎳後,其二氧化鈦銳鈦礦晶相轉變成金紅石晶相的轉換溫度提高。NiO/TiO2光觸媒顆粒也隨著煅燒溫度的提高而增加。由實驗結果證明當摻雜0.1%和0.5%之氧化鎳所形成的NiO/TiO2之p-n接面光觸媒比純TiO2光觸媒有較佳的光還原活性。將此結果歸因於三個原因。第一,摻雜氧化鎳會抑制了二氧化鈦之銳鈦礦晶相轉變成金紅石晶相。第二,摻雜氧化鎳會抑制二氧化鈦顆粒的成長,使得觸媒有較大的比表面積。第三,氧化鎳扮演電洞捕捉的角色,抑制了光產生電子-電洞對的再結合。


    The effects of solvent used in sol-gel process for TiO2 synthesis and doping of NiO formed p-n junction photocatalyst on the particle structure, characteristics and photocatalytic activity were studied. The anatase phases of TiO2 prepared with different alcohols as solvent by sol-gel method and calcined at 500 oC for 2 hours were decreased with alcohols of more carbons because addition of alcohols of more carbons might reduce the rates of hydrolysis and condensation. The aggregation of prepared TiO2 was more serious for using alcohols of more carbons as solvent; therefore, specific surface area was decreased. The photoreduction activity of TiO2 prepared with alcohols of fewer carbons was higher than more carbons.
    On the p-n junction NiO/TiO2 photocatalyst, the transformation temperature from anatase to rutile crystal phase was enhanced greatly for NiO-doped TiO2. The particle size of NiO/TiO2 photocatalyst increased with the increasing of calcining temperature. The photoreduction activity of NiO/TiO2 photocatalysts doped with 0.1 % and 0.5 % NiO were higher than pure TiO2. The results can be ascribed to three possible reasons. First, the crystal phase transformation of TiO2 from anatase to rutile was prevented with doped NiO. Second, NiO doped could inhibit the growth of the TiO2 grains to increase the specific surface area of the catalysts. Third, NiO doped act as trap for holes to inhibit the recombination of photogenerated electron-hole pairs.

    Chapter 1 Introduction 1.1 Background 1.2 Objectives and Scope Chapter 2 Literature Review 2.1 Introduction of Photocatalyst 2.2 Modification of Photocatalyst 2.2.1 Metal-Doped Photocatalyst 2.2.2 Non-Metal-Doped Photocatalyst 2.2.3 Metal Oxide-Doped Photocatalyst 2.3 Introduction of p-n Junction Photocatalyst 2.3.1 p-n Junction Theory 2.3.2 Design of p-n Junction Photocatalysts 2.3.3 NiO and p-n Junction Photocatalyst 2.4 Preparation of p-n Junction Photocatalyst 2.4.1 Solid-State Reaction 2.4.2 Incipient Wetness Impregnation 2.4.3 Photodeposition 2.4.4 Sol-gel Method 2.5 Operation Factors on Photocatalyst Preparation by Sol-gel Method 2.5.1 Metal Alkoxides 2.5.2 pH Value 2.5.3 Hydrolysis Temperature 2.5.4 Calcined Temperature 2.5.5 Type of Solvent Chapter 3 Experimental Procedures and Equipments 3.1 Instruments 3.2 Materials 3.3 Apparatus 3.4 Experimental Procedures 3.4.1 Experimental Framework 3.4.2 Catalyst Preparation 3.4.3 Characterization Analysis of Photocatalysts 3.4.4 Decomposition of Cr(Ⅵ) in photocatalytic process 3.4.5 Background Experiments Chaper 4 Results and Discussion 4.1 Characterizations of TiO2 Catalysts Prepared with Different Solvents 4.1.1 Thermal Analysis 4.1.2 X-ray Diffraction (XRD) Analysis 4.1.3 UV-vis Diffuse Reflectance Spectra (DRS) Analysis 4.1.4 Scanning Electron Microscopy (SEM) Analysis 4.1.5 Specific Surface Area Measurement 4.1.6 Zeta Potential Analysis 4.2 Characterizations of NiO/TiO2 Catalysts Calcined at Various Temperatures 4.2.1 X-ray Diffraction (XRD) Analysis 4.2.2 Scanning Electron Microscopy (SEM) Analysis 4.2.3 Specific Surface Area Measurement 4.3 Characterizations of TiO2 Catalysts Doped Various NiO Dosages 4.3.1 Thermal Analysis 4.3.2 X-ray Diffraction (XRD) Analysis 4.3.3 UV-vis Diffuse Reflectance Spectra (DRS) Analysis 4.3.4 X-ray Photoelectron Spectroscope (XPS) Analysis 4.3.5 Surface Photovoltage Spectroscopy (SPS) Analysis 4.3.6 Specific Surface Area Measurement 4.3.7 Zeta Potential Analysis 4.4 Photocatalytic Reduction of Cr(VI) in Aqueous Solutions using TiO2 and NiO/TiO2 Photocatalysts 4.4.1 Background Experiments of Photocatalysis 4.4.2 Effect of TiO2 Catalysts Prepared with Different Solvents 4.4.3 Effect of TiO2 Catalysts Doped Various NiO Dosages 4.4.4 Effect of NiO/TiO2 Catalysts Calcined at Various Temperatures 4.4.5 Addition of Hole Scavenger Chaper 5 Conclusions and Recommendations 5.1 Conclusions 5.2 Recommendations

    Bandara, J., U.W. Pradeep and R.G.S.J. Bandara, “The Role of n-p Junction Electrodes in Minimizing the Charge Recombination and Enhancement of Photocurrent and Photovoltage in Dye Sensitized Solar Cells,” J. Photochem. Photobiol., A, Vol.170, pp. 273-278 (2005)
    Behnajady, M. A., N. Modirshahla, M. Shokri and B. Rad, “Enhancement of Photocatalytic Activity of TiO2 Nanoparticles by Silver Doping: Photodeposition versus Liquid Impregnation Methods,” Global NEST Joumal, Vol.10, pp. 1-7 (2008)
    Biju, V., “Ni 2p X-ray Photoelectron Spectroscopy Study of Nanostructured Nickel Oxide,” Mater. Res. Bull., Vol. 42, pp. 791-796 (2007)
    Bokhimi, X., A. Morales, O. Novaro, T. Lopez, O. Chimal, M. Asomoza and R. Gomez, “Effect of Copper Precursor on the Stabilization of Titania Phases, and the Optical Properties of Cu/TiO2 Prepared with the Sol-gel Technique,” Chem. Mater., Vol. 9, pp. 2616-2620 (1997)
    Bokhimi, X., A. Morales, M. Aguilar, J.A. Toledo-Antonio and F. Pedraza, “Local order in Titania Polymorphs,” Int. J. Hydrogen Energy, Vol. 26, pp. 1279-1287 (2001)
    Brunauer, S., P.H. Emmett, and E. Teller, “Adsorption of Gases in Multimolecular Layers,” J. Am. Chem. Soc., Vol. 60, pp.309-319 (1938)
    Chen, D. and A. K. Ray, “Removal of Toxic Metal Ions from Wastewater by Semiconductor Photocatalysis,” Chem. Eng. Sci., Vol. 56, pp. 1561-1570 (2001)
    Chen, Y., J. C. Crittenden, S. Hackney, L. Sutter and D. W. Hand, “Preparation of a Novel TiO2-based p-n junction Nanotube Photocatalyst,” Environ. Sci. Technol., Vol. 39, pp. 1201-1208 (2005)
    Cogan, S. F., N. M. Nguyen, S. J. Perrotti and R. D. Rauh, “Optical Properties of Electrochromic Vanadium Pentoxide,” J. Appl. Phys., Vol. 66, pp.1333-1337 (1989)
    Fang, X., Z. Zhang, Q. Chen, J. H. Ji and X. G.ao, “Dependence of Nitrogen Doping on TiO2 Precursor Annealed under NH3 Flow,” J. Solid State Chem., Vol. 180, pp. 1325-1332 (2007)
    Foster, N. S., R. D. Noble and C. A. Koval, “Reversible Photoreductive Deposition and Oxidative Dissolution of Copper Ions in Titanium Dioxide Aqueous Suspensions,” Environ. Sci. Technol., Vol. 27, pp. 350-356 (1983)
    Fuerte, A., M. D. Hernandez-Alonso, A. J. Maira, A. Martinez-Arias, M. Fernandez-Garcia, J. C. Conesa, J. Soria and G. Munuera. “Nanosize Ti-W Mixed Oxides: Effect of Doping Level in the Photocatalytic Degradation of Toluene Using Sunlight-type Excitation,” J. Catal., Vol. 212, pp. 1-9 (2002)
    Fujishima, A., K. Hashoimoto and T. Watanabe, “TiO2 Photocatalysis Fundamentals and Application,” BKC, Inc., Tokyo (1999)
    Gondal, M.A., M.N. Sayeed and Z. Seddigi, “Laser Enhanced Photo-catalytic Removal of Phenol from Water Using p-type NiO Semiconductor Catalyst,” J. Hazard. Mater., Vol. 155, pp. 83-89 (2008)
    Hagfeld, A. and M. Gratzel, “Light-induced Redox Reactions in Nanocrystalline Systems,” Chem. Rev., Vol. 95, pp. 49-68 (1995)
    Hague, D. C. and M. J. Mayo, “Controlling Crystallinity during Processing of Nanocrystalline Titania,” J. Am. Ceram. Soc., Vol. 77, pp. 1957-1960 (1994)
    Hameed, A. and M.A. Gondal, “Laser Induced Photocatalytic Generation of Hydrogen and Oxygen over NiO and TiO2,” J. Mol. Catal. A: Chem., Vol. 219, pp. 109-119 (2004)
    Hoffmann, M. R., S. T. Martin and W. Choi, “Environmental Applications of Semiconductor Photocatalysis,” Chem. Rev., Vol. 95, pp. 69-96 (1995)
    Hu, L., T. Yokot, H. Kozuka and S. Sakka, “Effects of Solvent on Properties of Sol-gel-derived TiO2 Coating Films,” Thin Solid Films, Vol. 219, pp. 18-23 (1992)
    Jing, L.Q., Z. L. Xu, J. Shang, X. J. Sun, W. M. Cai and H.G. Fu, “Review of Surface Photovoltage Spectra of Nano-sized Semiconductor and its Applications in Heterogeneous Photocatalysis,” Sol. Energy Mater. Sol. Cells, Vol. 79, pp. 133-151 (2003)
    Linsebigler, A. L., G. Lu, and J. T.Yates, “Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results,” Chem. Rev., Vol. 95, pp. 735-758 (1995)
    Liu, J., W. Qin, S. Zuo, Y. Yu and Z. Hao, “Solvothermal-induced Phase Transition and Visible Photocatalytic Activity of Nitrogen-doped Titania,” J. Hazard. Mater., Vol. 163, pp. 273-278 (2009)
    Liu, X., Z. Jin, S. Bu and T. Yin, “Influences of Solvent on Properties of TiO2 Porous Films Prepared by a Sol-Gel Method from the System Containing PEG,” J. Sol-Gel Sci. Technol., Vol. 36, pp. 103-111 (2005)

    Machado, N. R.C. F. and V. S. Santana, “Influence of Thermal Treatment on the Structure and Photocatalytic Activity of TiO2 P25,” Catal. Today., Vol. 107-108, pp. 595-601 (2005)
    Montoya, I.A., T. Viveros, J.M. Dominguez, L.A. Canales and I. Schifter, “On the Effects of the Sol-gel Synthesis Parameters on Textural and Structural Characteristics of TiO2,” Catal. Lett., Vol. 15, pp. 207-217 (1992)
    Ohno, T., M. Akiyoshi, T. Umebayashi, K. Asai, T. Mitsui and M. Matsumura, “Preparation of S-doped TiO2 Photocatalysts and Their Photocatalytic Activities under Visible Light,” Appl. Catal., A, Vol. 265, pp. 115-121 (2004)
    Ohya, Y., H. Koyama, T. Ban and Y. Takahashi, “Electrical Properties of p-n Contact with Oxide Semiconductor Films Fabricated by Liquid Phase Method,” Mater. Sci. Eng., B, Vol.54, pp.55-59 (1998)
    P’al, E., V. Hornok, A. Oszk’o and I. D’ek’any, “Hydrothermal Synthesis of Prism-like and Flower-like ZnO and Indium-doped ZnO Structures,” Colloids Surf., A, Vol. 340, pp. 1-9 (2009)
    Prairie, M. R., L. R. Evans, B. M. Stange and S. L. Martinez, “An Investigation of TiO2 Photocatalysis for the Treatment of Water Contaminated with Metals and Organic Chemicals,” Environ. Sci. Technol., Vol. 27, pp. 1776-1782 (1993)
    Rahman, M. M., K. M. Krishna, T. Soga, T. Jimbo and, M. Umeno, “Optical Properties and X-ray Photoelectron Spectroscopic Study of Pure and Pb-doped TiO2 Thin Films,” J. Phys. Chem., Vol.60, pp. 201-210 (1999)
    Riyas, S., G. Krishnan and P.N. Mohan Das, “Rutilation in Nickel Oxide-doped Titania Prepared by Different Methods,” Ceram. Int., Vol. 32, pp. 593-598 (2006)
    Sakai, H., H. Kawahara, M. Shimazaki and M. Abe, “Preparation of Ultrafine Titanium Dioxide Particles Using Hydrolysis and Condensation Reactions in the Inner Aqueous Phase of Reversed Micelles: Effect of Alcohol Addition,” Langmuir, Vol. 14, pp. 2208-2212 (1998)
    Sakthivel, S., M.V. Shankar, M. Palanichamy, B. Arabindoo, D.W. Bahnemann and V. Murugesan, “Characterisation and Photonic Efficiency of Pt, Au and Pd Deposited on TiO2 Catalyst,” Water Res., Vol. 38, pp. 3001-3008 (2004)
    Sano, T., E. Puzenat, C. Guillard, C. Geantet and S. Matsuzawa, “Degradation of C2H2 with Modified-TiO2 Photocatalysts under Visible Light Irradiation,” J. Mol. Catal. A: Chem., Vol. 284, pp. 127-133 (2008)
    Shifu, C., Z. Sujuan, L. Wei and Z. Wei, “Preparation and Activity Evaluation of p-n Junction Photocatalyst NiO/TiO2,” J. Hazard. Mater., Vol. 155, pp. 320-326 (2008)
    Shifu, C., Z. Wei, L. Wei and Z. Sujuan, “Preparation, Characterization and Activity Evaluation of p-n Junction Photocatalyst p-ZnO/n-TiO2,” Appl. Surf. Sci., Vol. 255, pp. 2478-2484 (2008)
    Simon, M., “Semiconductor Devices, Physics and Technology,” National Chiao Tung University, 2nd Edition (2002)
    Sreethawong, T., Y. Suzuki and S. Yoshikawa, “Photocatalytic Evolution of Hydrogen over Mesoporous TiO2 Supported NiO Photocatalyst Prepared by Single-step Sol-gel Process with Surfactant Template,” Int. J. Hydrogen Energy, Vol. 30, pp. 1053-1062 (2005)
    Taylor, M. L., G. E. Morris and St. C. S. Roger, “Influence of Aluminum Doping on Titania Pigment Structural and Dispersion Properties,” J. Colloid Interface Sci., Vol. 262, pp. 81-88 (2003)
    Valdivieso, A. L., J. L. R. Bahena, S. Song and R. H. Urbina, “Temperature Effect on the Zeta Potential and Fluoride Adsorption at the α-Al2O3/aqueous Solution Interface,” J. Colloid Interface Sci., Vol. 298, pp. 1-5 (2006)
    Wang, F., W. Li, Z. Jiang and Y. Song, “Fabrication of Single-Phase BaTi4O9 Nanocrystalline Powder by Sol-Gel Process,” Journal Sol-gel Science and Technology, Vol. 23, pp. 39-43 (2002)
    Wang, S., Z. Wang and Q. Zhuang, “Photocatalytic Reduction of the Environmental Pollutant Cr(VI) over a Cadmium Sulfide Powder under Visible Light Illumination,” Appl. Catal., B, Vol. 1, pp. 257-270 (1992)
    Wu, C. G., C. C. Chao and F. T. Kuo, “Enhancement of the Photocatalytic Performance of TiO2 Catalysts via Transition Metal Modification,” Cata. Today, Vol. 97, pp. 103-112 (2004)
    Xin, B., P. Wang, D. Ding, J. Liu, Z. Ren and H. Fu, “Effect of Surface Species on Cu-TiO2 Photocatalytic Activity,” Appl. Surf. Sci., Vol. 254, pp. 2569-2574 (2008)
    Xing, J., Z. Shan, K. Li, J. Bian, X. Lin, W. Wang and F. Huang, “Photocatalytic Activity of Nb2O5/SrNb2O6 Heterojunction on the Degradation of Methyl Orange,” J. Phys. Chem. Solids, Vol. 69, pp. 23-28 (2008)
    Xu,Y. H., D. H. Liang, M. L. Liu and D. Z. Liu, “Preparation and Characterization of Cu2O-TiO2:Efficient Photocatalytic Degradation of Methylene Blue,” Mater. Res. Bull., Vol. 43, pp. 3474-3482 (2008)
    Yang X., C. Cao, K. Hohn, L. Erickson, R. Maghirang, D. Hamal and K. Klabunde, “Highly Visible-light Active C- and V-doped TiO2 for Degradation of Acetaldehyde,” J. Catal., Vol. 252, pp. 296-302 (2007).
    Yoldas, B. E., “Hydrolysis of Titanium Alkoxide and Effects of Hydrolytic Polycondensation Parameters,” J. Mater. Sci., Vol. 21, pp. 1087-1092 (1986)
    Yoshitake, M., A. Thananan, T. Aizawaki and K. Yoshihara, “Micro-XPS Analysis of Slide-tested TiN Films with/without Cl+ Implantation,” Surf. Interface Anal., Vol. 34, pp. 698-702 (2002)
    Yu, J. C., J. G. Yu and J. C. Zhao, “Enhanced Photocatalytic Activity of Mesoporous and Ordinary TiO2 Thin Films by Sulfuric Acid Treatment,” Appl. Catal. B: Environ., Vol.36, pp. 31-43 (2002)
    Yu, H., X. J. Li, S. J. Zheng and W. Xu, “Photocatalytic Activity of TiO2 Thin Film Non-uniformly Doped by Ni,” Mater. Chem. Phys., Vol. 97, pp. 59-63 (2006)
    Zhang, S., J. Wang and X. Wang, “Effect of Calcination Temperature on Structure and Performance of Ni/TiO2-SiO2 Catalyst for CO2 Reforming of Methane,” J. Nat. Gas Chem., Vol. 17, pp. 179-183 (2008)
    Zhou, L. M., Y. P. Wang and Q. W. Huang, “The Effect of pH Value on Preparation of TiO2 Nanoparticles with Sol-gel Method,” Guocheng Gongcheng Xuebao/The Chinese Journal of Process Engineering, Vol. 7, pp. 556-560 (2007)
    Zywitzki, O., T. Modes, H. Sahm, P. Frach, K. Goedicke and D. Glo, “Structure and Properties of Crystalline Titanium Oxide Layers Deposited by Reactive Pulse Magnetron Sputtering,” Surf. Coat. Technol., Vol. 108-181, pp. 538-543 (2004)
    莊英良,“以紫外線/二氧化鈦程序分別處理含六價鉻及亞素靈水溶液反應行為之研究”, 國立臺灣科技大學化學工程研究所碩士論文 (1996)
    王鈴祺,“以紫外線/La2Ti2O7程式分別處理含染料及異丙醇水溶液”,國立臺灣科技大學化學工程研究所碩士論文 (2006)
    侯韋銘,“溶膠凝膠法合成鈦酸鑭在紫外光下分解染料水溶液之研究”,國立臺灣科技大學化學工程研究所碩士論文 (2007)
    陳婉君,“以熱沉積法摻雜氮在二氧化鈦之特性與光催化研究”,國立臺灣科技大學化學工程研究所碩士論文 (2008)

    無法下載圖示 全文公開日期 2014/07/27 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE