簡易檢索 / 詳目顯示

研究生: 黃郁涵
Yu-Han Huang
論文名稱: 鐵/鈷二元金屬有機骨架材料的合成與形貌控制
Study on the morphology control of Fe/Co-based metal-organic frameworks
指導教授: 蔡孟霖
Meng-Lin Tsai
余政儒
Cheng-Ju Yu
李權倍
Chuan-Pei Lee
口試委員: 蔡孟霖
Meng-Lin Tsai
余政儒
Cheng-Ju Yu
李權倍
Chuan-Pei Lee
蕭育生
Yu-Sheng Hsiao
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 138
中文關鍵詞: 混合控制劑的影響電化學催化成核機制金屬有機骨架
外文關鍵詞: co-solvent effect, electrochemical catalysis, mechanism of nucleation, metal-organic frameworks
相關次數: 點閱:228下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,三維奈米孔洞材料備受矚目,因其具有能夠客製化的內部結構,在眾多應用領域都被認為是具有潛力的新興材料。在本文中,將會劃分為兩個部分對鐵/鈷二元金屬有機骨架材料(Iron/cobalt metal-organic framework, Fe/Co-MOFs)進行深入的研究。
    首先,第一部分是針對材料的合成參數進行成長機制的分析,再利用混合形狀控制劑的方式改變材料形貌。在這個章節中,本實驗除了通過水熱法成功合成出二元金屬有機骨架材料外,亦進行一系列合成參數控制實驗,包含金屬離子濃度對材料結晶度影響,不同形狀控制劑濃度與其尺寸大小的關係,還有溫度與時間對成核的影響與控制。並利用電子顯微鏡(Scanning electron microscope, SEM),X射線衍射分析(X-ray diffractometer, XRD)進行材料鑑定,以確認所製備的Fe/Co-MOFs的結構形態。在參數的調整下,鐵/鈷二元金屬有機骨架材料不管是在晶體尺寸上,亦或是結晶度都有很大的差異。此外,本文也提供一種新式的結晶形貌控制策略,透過檸檬酸與硫乙醯胺的相互混合,材料形貌也因此改變。除添加劑(形貌控制劑)選擇外,合成步驟與添加劑混合之體積比例,也在晶體的再結晶過程中扮演很重要的角色。實驗中,將起初合成具有平均尺寸為1,080±235 nm之截頭立方體Fe/Co-MOFs進行混合添加劑實驗後,不僅可以使材料擁有多邊形的外觀,同時也給予晶體重新構築孔洞結構的可能性。
    而第二部分則是將上述合成的材料(通過兩步驟之控制劑添加的方式所合成的)進行一系列的電化學分析實驗,探討其催化性能。由於經濟發展和人口增長促使能源需求的大幅增長、全球暖化日益嚴重,為了尋找清潔/可再生能源替代品,在過去的十年中,電化學水分解實驗成為許多科學家爭相研究的主題之一。然而,在實際應用面上目前尚未開發出具有低成本,同時穩定和環境友好的催化材料。為了達到上述目標,本實驗將所獲得之材料組裝碳布上,並將其應用於析氧反應實驗。由高解析電子顯微鏡(High resolution transmission electron microscopy, HRTEM)可以發現,經過混合控制劑的方法,Fe/Co-MOF的衍生物由原本的面心立方(Face-center cubic, FCC)轉變為六方最密堆積(Hexagonal close-packed, HCP)結構。而且比起原先的材料能夠擁有更多的晶面,這使得在催化上能有更多的活性位點的可能性。最終,可以發現六角平面狀的鐵/鈷二元金屬有機骨架材料(Fe/Co-MOF C7 T3)擁有最佳的電化學催化性能。不僅有最小的塔菲爾斜率(Tafel slope: 57.6 mV dec-1)、過電位為0.399 V (Overpotential for 10 mA cm-2)、啟動電位(On-set potential: 0.300 V)與電化學阻抗(Electrochemical impedance: 7.72 Ω),同時,在不同的循環伏安法掃速下,也都有擁有最大的電容量(Capacitance: 4.28 mF cm-2)。本文所報導之Fe/Co-MOF與其衍生物,由於其優異的催化性能,因此可被視為低成本且環境友善優點之潛力催化材料。
    在本文中,進行了一系列的參數調整試驗,不管是濃度、添加體積比、反應溫度、反應時間,抑或是pH值的變化,都會很直接的影響到最終材料的形貌、內部結構,或是應用端性能。在精確的控制下,可以針對應用領域的不同,設計出各種各樣的形貌,同時具備有不同功能性的材料,相信在各個領域中都會有不錯的效能。


    In recent years, three-dimensional nano-porous materials have attracted wide attention. Because of their customizable internal structure, they are considered as potential emerging materials in various applications. This article is divided into two parts and conducted in-depth research on iron/cobalt metal-organic framework (Fe/Co-MOFs).
    First of all, the first chapter introduced how to synthesize the Fe/Co-MOFs, and analyzed the synthesis parameters of the materials through thermodynamics and kinetics. Then, a novel co-solvent method is used to change the morphology of the material. In addition to successfully synthesizing binary metal organic framework materials by hydrothermal method, this work also conducted a series of parameter control experiments, including the influence of metal ions concentration on the crystallinity of the material, and particle size difference with different solvent concentration. There also investigated the influence of reaction time and temperature on nucleation. Furthermore, using scanning electron microscope (SEM), X-ray diffractometer (XRD) for material identification to confirm the structure of the Fe/Co-MOFs prepared. Under the adjustment of the parameters, the crystal size and crystallinity of Fe/Co-MOFs have changed greatly. Additionally, a series of co-solvent experiments have also been carried out in this research. By adding two different solvents (citric acid and thioacetamide), it can be found that the morphology has become completely different. Not only the choice of solvent, but also the volume ratio of the solvent mixture and the synthesis steps play an important role in the re-grow process. It can be found that the synthesized Fe/Co-MOF can be identified as a truncated cube with an average size of 1,080±235 nm which was subjected to a co-solvent experiment. Through modification, the material not only has a variety of morphologies, but also provides an opportunity for the crystal to rebuild the internal (pore) structure.
    The second chapter is a series of electrochemical experiments on the above-mentioned materials (two-step synthesis products), and discusses their catalytic performance. With population growth and economic development, the problem of energy demand and global warming has increased significantly. In order to find available clean and renewable energy alternatives, electrochemical water splitting experiments have become one of the popular research topics in the past few decades. However, in practical applications, low-cost, stable and environmentally friendly catalytic materials have not yet been developed. In order to achieve the above-mentioned purpose, this experiment dropped the obtained material on a carbon cloth (CC) and applied it to the oxygen evolution reaction (OER). Through high-resolution transmission electron microscopy (HRTEM), it can be found that after the co-solvent reaction, the original face-center cubic (FCC) transforms into the hexagonal close-packed (HCP) structure. Moreover, Fe/Co-MOF derivatives have more crystal planes than the original one, so they can have more active sites in the catalytic process. In the final result, it can be found that the hexagonal planar MOF (Fe/Co-MOF C7 T3) has the best electrochemical catalytic performance. Not only exhibit the lowest Tafel slope (57.6 mV dec-1), overpotential of 0.399 V (under 10 mA cm-2), on-set potential (0.300 V) and electrochemical impedance (7.72 Ω), but the largest capacitance (4.28 mF cm-2) versus cyclic voltammetry (CV) scan rates. The Fe/Co-MOF and its derivatives reported in this study can be considered as one of the potential catalytic materials due to their excellent catalytic performance, with the advantages of low cost and environmental friendliness.
    In this work, a series of parameter adjustment experiments were carried out. Regardless of the concentration, addition volume ratio, reaction time and temperature, or changes in pH, it will directly affect the morphology, internal structure, or performance of the final material. Under precise control, various shapes can be designed according to different application, and materials with different functions can be provided.

    誌謝 I 摘要 II Abstract IV 目錄 VII 圖目錄 XI 表目錄 XVIII 緒論 1 第一部分 鐵/鈷二元金屬有機骨架材料之形貌控制研究 2 第1章 前言 2 1.1 金屬有機骨架材料的分類與基本性質 2 1.2 雙金屬有機骨架材料的性質與應用 5 1.3 鐵/鈷基金屬有機骨架材料之特性 8 1.4 動機與目的 10 第2章 文獻回顧與探討 11 2.1 金屬有機骨架材料之發展 11 2.2 金屬有機骨架材料之合成與成核/生長機制探討 13 2.2.1 合成方法 13 2.2.2 成核/生長機制 15 2.3 金屬有機骨架材料之結構控制 17 2.3.1 多變量分析結構可能性 17 2.3.2 金屬中心對結構的影響 18 2.3.3 有機配體對結構的影響 22 2.4 官能化金屬有機骨架材料與其應用 24 2.5 金屬有機骨架材料之形貌控制方法 28 2.5.1 混合金屬中心或有機配體 28 2.5.2 溶劑誘導 29 2.5.3 表面活性劑輔助合成 30 2.5.4 化學蝕刻 31 第3章 實驗方法與儀器分析 32 3.1 實驗流程 32 3.2 實驗藥品、設備與分析儀器 33 3.2.1 實驗藥品 33 3.2.2 實驗設備 33 3.2.3 分析儀器 34 3.3 藥品配製與合成方法 35 3.3.1 不同金屬離子濃度 35 3.3.2 不同形狀控制劑濃度 35 3.3.3 溫度變化 36 3.3.4 合成時間 36 3.4 混合控制劑的影響: 一步驟合成法 36 3.4.1 不同體積比例Fe/Co-MOF衍生物的合成 37 第4章 結果與討論 38 4.1 金屬有機骨架材料之合成與成核機制探討 38 4.1.1 不同金屬離子濃度對Fe/Co-MOF之成核影響 39 4.1.2 不同形狀控制劑(CA)濃度對Fe/Co-MOFs的影響 40 4.1.3 溫度變化與Fe/Co-MOF形貌之間的關聯性 42 4.1.4 合成時間對Fe/Co-MOF尺寸分布的影響 43 4.1.5 合成參數控制後最終Fe/Co-MOF的材料鑑定結果 44 4.2 混合控制劑對金屬有機骨架材料的影響: 一步驟合成 46 4.2.1 添加劑的選擇 46 4.2.2 添加劑混合體積比對於材料形貌的影響 47 第5章 結論與未來展望 52 第二部分 多活化位點鐵/鈷二元金屬有機骨架材料作為析氧反應觸媒材料 53 第1章 前言 53 1.1 電化學的基本概念與應用 53 1.2 金屬有機骨架材料在電化學領域中的潛力 57 1.3 動機與目的 58 第2章 文獻回顧與探討 59 2.1 電化學相關反應機理 59 2.1.1 析氫反應(HER)/氫氣氧化反應(HOR) 60 2.1.2 析氧反應(OER)/氧還原反應(ORR) 61 2.2 常見過渡金屬類電催化觸媒 64 2.2.1 合金 64 2.2.2 過渡金屬硼化物 65 2.2.3 過渡金屬碳化物 66 2.2.4 過渡金屬氮化物 67 2.2.5 過渡金屬磷化物 68 2.2.6 過渡金屬氧化物 69 2.2.7 過渡金屬硫化物 70 2.2.8 金屬有機骨架材料 71 2.3 提升電化學催化劑性能的方法 72 2.3.1 結構設計 72 2.3.2 晶面影響 73 2.3.3 表面缺陷 74 第3章 實驗方法與儀器分析 75 3.1 實驗流程 75 3.2 實驗藥品、設備與分析儀器 76 3.2.1 實驗藥品 76 3.2.2 實驗設備 76 3.2.3 分析儀器 77 3.3 混合控制劑的影響: 兩步驟合成法 79 3.3.1 不同體積比例形貌控制劑影響 79 3.4 電化學實驗方法 80 3.4.1 電化學樣品製備 80 3.4.2 電化學分析條件 81 第4章 結果與討論 82 4.1 混合控制劑對金屬有機骨架材料的影響: 兩步驟合成 82 4.2 電化學實驗結果 91 第5章 結論與未來展望 95 參考文獻 96

    [1] Vaughan, O. Porous by design. Nature milestones 2014, 511, 19.
    [2] Yaghi, O. M.; Li, H. Hydrothermal synthesis of a metal-organic framework containing large rectangular channels. J. Am. Chem. Soc. 1995,117, 10401-10402.
    [3] Xia, Q.; Wang, H.; Huang, B.; Yuan, X.; Zhang, J.; Zhang, J.; Jiang, L.; Xiong, T.; Zeng, G. State-of-the-art advances and challenges of iron-based metal organic frameworks from attractive features, syn-thesis to multifunctional applications. Small 2019, 15, 1803088.
    [4] Masoomi, M. Y.; Morsali, A.; Dhakshinamoorthy, A.; Garcia, H. Mixed-metal MOFs: unique opportunities in metal-organic framework (MOF) functionality and design. Angew. Chem. Int. Ed. 2019, 58, 15188-15205.
    [5] Dhakshinamoorthy, A.; Asiri, A. M.; Garcia, H. Mixed-metal or mixed-linker metal organic frameworks as heterogeneous catalysts. Catal. Sci. Technol. 2016, 6, 5238-5261.
    [6] Jiang, Z. J.; Cheng, S.; Rong, H.; Jiang, Z.; Huang, J. General synthesis of MFe2O4/carbon (M=Zn, Mn, Co, Ni) spindles from mixed metal organic frameworks as high performance anodes for lithium ion batteries. J. Mater. Chem. A 2017, 5, 23641-23650.
    [7] Chen, B.; Xiang, S.; Qian, G. Metal-organic frameworks with functional pores for recognition of small molecules. Acc. Chem. Res. 2010, 43, 1115-1124.
    [8] Keskin, S.; Kızılel, S. Biomedical applications of metal organic frameworks. Ind. Eng. Chem. Res. 2011, 50, 1799-1812.
    [9] Sun, K.; Li, L.; Yu, X.; Liu, L.; Meng, Q.; Wang, F.; Zhang, R. Functionalization of mixed ligand metal-organic frameworks as the transport vehicles for drugs. J. Colloid Interface Sci. 2017, 486, 128-135.
    [10] Li, B.; Wen, H. M.; Zhou, W.; Chen, B. Porous metal-organic frameworks for gas storage and separation: what, how, and why? J. Phys. Chem. Lett. 2014, 5, 3468-3479.
    [11] Papaefstathiou, G. S.; MacGillivray, L. R. Inverted metal-organic frameworks: solid-state hosts with modular functionality. Coord. Chem. Rev. 2003, 246, 169-184.
    [12] Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O’Keeffe, M.; Yaghi, O. M. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 2002, 295, 469-472.
    [13] Rowsell, J. L. C.; Yaghi, O. M. Metal-organic frameworks: a new class of porous materials. Microporous Mesoporous Mater. 2004, 73, 3-14.
    [14] Rungtaweevoranit, B.; Diercks, C. S.; Kalmutzki, M. J.; Yaghi, O. M. Spiers memorial lecture: Progress and prospects of reticular chemistry. Faraday Discuss. 2017, 201, 9-45.
    [15] Permyakova, A.; Wang, S.; Courbon, E.; Nouar, F.; Heymans, N.; Pierre D'Ans, Barrier, N.; Billemont, P.; Weireld, G. D.; Steunou, N.; Frère, M.; Serre, C. Design of salt-metal organic framework composites for seasonal heat storage applications. J. Mater. Chem. A 2017, 5, 12889-12898.
    [16] Feng, L.; Wang, Y.; Yuan, S.; Wang, K. Y.; Li, J. L.; Day, G. S.; Qiu, D.; Cheng, L.; Chen, W. M.; Madrahimov, S. T.; Zhou, H. C. Porphyrinic metal-organic frameworks installed with brønsted acid sites for efficient tandem semisynthesis of artemisinin. ACS Catal. 2019, 9, 5111-5118.
    [17] Mathias, P. M.; Kumar, R.; Moyer, D.; Schork, J. M.; Srinivasan, S. R.; Auvil, S. R.; Talu, O. Correlation of multicomponent gas adsorption by the dual-site langmuir model. Application to nitrogen/oxygen adsorption on 5A-Zeolite. Ind. Eng. Chem. Res. 1996, 35, 2477-2483.
    [18] Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444.
    [19] Mendes, R. F.; Figueira, F.; Leite, J. P.; Gales, L.; Paz, F. A. A. Metal-organic frameworks: a future toolbox for biomedicine? Chem. Soc. Rev. 2020, 49, 9121-9153.
    [20] Das, M. C.; Xiang, S.; Zhang, Z.; Chen, B. Functional mixed metal-organic frameworks with metalloligands. Angew. Chem. Int. Ed. 2011, 50, 10510-10520.
    [21] Burrows, A. D. Mixed-component metal-organic frameworks (MC-MOFs): enhancing functionality through solid solution formation and surface modifications. CrystEngComm 2011, 13, 3623.
    [22] Taylor, K. M. L.; Jin, A.; Lin, W. Surfactant-assisted synthesis of nanoscale gadolinium metal-organic frameworks for potential multimodal imaging. Angew. Chem. 2008, 120, 7836-7839.
    [23] Falcaro, P.; Furukawa, S. Doping light emitters into metal-organic frameworks. Angew. Chem. Int. Ed. 2012, 51, 8431-8433.
    [24] He, J.; Wang, J.; Chen, Y.; Zhang, J.; Duan, D.; Wang, Y.; Yan, Z. A dye-sensitized Pt@UiO-66(Zr) metal-organic framework for visible-light photocatalytic hydrogen production. Chem. Commun. 2014, 50, 7063-7066.
    [25] Sun, D.; Liu, W.; Qiu, M.; Zhang, Y.; Li, Z. Introduction of a mediator for enhancing photocatalytic performance via post-synthetic metal exchange in metal-organic frameworks (MOFs). Chem. Commun. 2015, 51, 2056-2059.
    [26] Tsuji, I.; Kato, H.; Kobayashi, H.; Kudo, A. Photocatalytic H2 evolution reaction from aqueous solutions over band structure-controlled (AgIn)xZn2(1-x)S2 solid solution photocatalysts with visible-light response and their surface nanostructures. J. Am. Chem. Soc. 2004, 126, 13406-13413.
    [27] Huang, Y.; Zheng, Z.; Ai, Z.; Zhang, L.; Fan, X.; Zou, Z. Core-shell microspherical Ti1-xZrxO2 solid solution photocatalysts directly from ultrasonic spray pyrolysis. J. Phys. Chem. B 2006, 110, 19323-19328.
    [28] Pearson, R. G. Hard and soft acids and bases. J. Am. Chem. Soc. 1963, 85, 3533-3539.
    [29] Wang, J.; Zhou, S.; Chen, C.; Lu, L.; Li, B.; Hu, W.; Kumar, A.; Muddassir, M. Two new uncommon 3D cobalt-based metal organic frameworks: Temperature induced syntheses and enhanced photocatalytic properties against aromatic dyes. Dyes Pigm. 2021, 187, 109068.
    [30] Anipsitakis, G. P.; Dionysiou, D. D. Radical generation by the interaction of transition metals with common oxidants. Environ. Sci. Technol. 2004, 38, 3705-3712.
    [31] Hua, Y.; Lia, X.; Chen, C.; Pang, H. Cobalt based metal-organic frameworks and their derivatives for electrochemical energy conversion and storage. Chem. Eng. J. 2019, 370, 37-59.
    [32] Buser, H. J.; Schwarzenbach, D.; Petter, W.; Ludi, A. The crystal structure of Prussian blue: Fe4[Fe(CN)6]3 • xH2O. Inorg. Chem. 1977, 16, 2704-2710.
    [33] Brown, D. B.; Shriver, D. F. Structures and solid-state reactions of Prussian Blue analogs containing chromium, manganese, iron, and cobalt. Inorg. Chem 1968, 90, 3201.
    [34] Yaghi, O. M.; Li, H. Hydrothermal synthesis of a metal-organic framework containing large rectangular channels. J. Am. Chem. Soc. 1995,117, 10401-10402.
    [35] Yaghi, O. M.; Li, G.; Li, H. Selective binding and removal to guests in a microporous metal-organic framework. Nature 1995, 378, 703-706.
    [36] Yaghi, O. M.; Richardson, D. A.; Li, G.; Davis, C. E.; Groy, T. L. Open-framework solids with diamond-like structures prepared from clusters and metal-organic building blocks. Mat. Res. Soc. Symp. Proc. 1995, 371, 15.
    [37] Janiak, C. Functional organic analogues of Zeolites based on metal-organic coordination frameworks. Anpis. Chrm Jnt. Ed. Engl. 1997, 36, 1431-1434.
    [38] Friedrichs, O. D.; O'Keeffe, M.; Yaghi, O. M. Three-periodic nets and tilings: regular and quasiregular nets. Acta Cryst. 2003, 59, 22-27.
    [39] Férey, G.; Serre, C.; Draznieks, C. M.; Millange, F.; Surblé, S.; Dutour, J.; Margiolaki, I. A hybrid solid with giant pores prepared by a combination of targeted chemistry, simulation, and powder diffraction. Angew. Chem. Int. Ed. 2004, 43, 6296-6301.
    [40] Kitagawa, S.; Kitaura, R.; Noro, S. I. Functional porous coordination polymers. Angew. Chem. Int. Ed. 2004, 43, 2334-2375.
    [41] Kalmutzki, M. J.; Hanikel, N.; Yaghi, O. M. Secondary building units as the turning point in the development of the reticular chemistry of MOFs. Sci. Adv. 2018, 4, 9180.
    [42] Hashemi, B.; Zohrabi, P.; Raza, N.; Kim, K. H. Metal-organic frameworks as advanced sorbents for the extraction and determination of pollutants from environmental, biological, and food media. Trends Analyt Chem 2017, 97, 65-82.
    [43] Butova, V. V.; Soldatov, M. A.; Guda, A. A.; Lomachenko, K. A.; Lamberti, C. Metal-organic frameworks: structure, properties, methods of synthesis and characterization. Russ. Chem. Rev. 2016, 85 280-307.
    [44] Pichon, A.; Lazuen-Garay, A.; James, S. L. Solvent-free synthesis of a microporous metal-organic framework. CrystEngComm 2006, 8, 211-214.
    [45] Qiu, L. G.; Li, Z. Q.; Wu, Y.; Wang, W.; Xu, T.; Jiang, X. Facile synthesis of nanocrystals of a microporous metal-organic framework by an ultrasonic method and selective sensing of organoamines. Chem. Commun. 2008, 3642-3644.
    [46] Martinez Joaristi, A.; Juan-Alcañiz, J.; Serra-Crespo, P.; Kapteijn, F.; Gascon, J. Electrochemical synthesis of some archetypical Zn2+, Cu2+, and Al3+ metal organic frameworks. Cryst. Growth Des. 2012, 12, 3489-3498.
    [47] Parnham, E. R.; Morris, R. E. Ionothermal synthesis of Zeolites, metal-organic frameworks, and inorganic-organic hybrids. Acc. Chem. Res. 2007, 40, 1005-1013.
    [48] Han, Y.; Yang, H.; Guo, X. Synthesis methods and crystallization of MOFs, Marzouki, R., InTechOpen, 2020.
    [49] Wu, Z.; Yang, S.; Wu. W. Shape control of inorganic nanoparticles from solution. Nanoscale 2016, 8, 1237-1259.
    [50] Mullin, J. W. Crystallization 4th edition, Butterworth-Heinemann, 2001.
    [51] Nguyen, T. D. From formation mechanisms to synthetic methods toward shape-controlled oxide nanoparticles. Nanoscale 2013, 5, 9455.
    [52] Thanh, N. T.; Maclean, N.; Mahiddine, S. Mechanisms of nucleation and growth of nanoparticles in solution. Chem. Rev. 2014, 114, 7610.
    [53] Sugimoto, T. Monodispersed particles, Elsevier Science, 2001.
    [54] Zong, R.; Wang, X.; Shi, S.; Zhu, Y. Kinetically controlled seed-mediated growth of narrow dispersed silver nanoparticles up to 120 nm: secondary nucleation, size focusing, and Ostwald ripening. Phys. Chem. Chem. Phys. 2014, 16, 4236.
    [55] Ockwig, N. W.; Delgado-Friedrichs, O; O’Keeffe, M.; Yaghi, O. M. Reticular chemistry: Occurrence and taxonomy of nets and grammar for the design of frameworks. Acc. Chem. Res. 2005, 38, 176-182.
    [56] Jiao, L.; Seow, J. Y. R.; Skinner, W. S.; Wang, Z. U.; Jiang, H.-L. Metal-organic frameworks: Structures and functional applications. Mater. Today 2019, 27, 43.
    [57] Luo, T. Y.; Liu, C.; Gan, X. Y.; Muldoon, P. F.; Diemler, N. A.; Millstone, J. E.; Rosi, N. L. Multivariate stratified metal-organic frameworks: Diversification using domain building blocks. J. Am. Chem. Soc. 2019, 141, 2161.
    [58] Hendon, C. H.; Rieth, A. J.; Korzynski, M. D.; Dinca, M. Grand challenges and future opportunities for metal-organic frameworks. ACS Cent Sci. 2017, 3, 554.
    [59] Feng, L.; Yuan, S.; Li, J. L.; Wang, K. Y.; Day, G. S.; Zhang, P.; Wang, Y.; Zhou, H. C. Uncovering two principles of multivariate hierarchical metal-organic framework synthesis via retrosynthetic design. ACS Cent Sci. 2018, 4, 1719.
    [60] Sun, L.; Hendon, C. H.; Park, S. S.; Tulchinsky, Y.; Wan, R.; Wang, F.; Walsh, A.; Dinca, M. Is iron unique in promoting electrical conductivity in MOFs? Chem. Sci. 2017, 8, 4450.
    [61] Ferey, G.; Millange, F.; Morcrette, M.; Serre, C.; Doublet, M. L.; Greneche, J. M.; Tarascon, J. M. Mixed-valence Li/Fe-based metal-organic frameworks with both reversible redox and sorption properties. Angew. Chem. Int. Ed. 2007, 46, 3259.
    [62] Li, H.; Wang, K.; Sun, Y.; Lollar, C. T.; Li, J.; Zhou, H.-C. Recent advances in gas storage and separation using metal-organic frameworks. Mater. Today 2018, 21, 108.
    [63] Xiao, D. J.; Gonzalez, M. I.; Darago, L. E.; Vogiatzis, K. D.; Haldoupis, E.; Gagliardi, L.; Long, J. R. Selective, tunable O2 binding in cobalt(II)-triazolate/pyrazolate metal-organic frameworks. J. Am. Chem. Soc. 2016, 138, 7161.
    [64] Yang, J.; Ma, Z.; Gao, W.; Wei, M. Layered structural Co-based MOF with conductive network frames as a new supercapacitor electrode. Chem. Eur. J. 2017, 23, 631.
    [65] O’Keeffe, M.; Peskov, M. A.; Ramsden, S. J.; Yaghi, O. M. The reticular chemistry structure resource (RCSR) database of, and symbols for, crystal nets. Acc. Chem. Res. 2008, 41, 1782-1789.
    [66] Balderas-Xicohténcatl, R.; Schlichtenmayer, M.; Hirscher, M. Volumetric hydrogen storage capacity in metal-organic frameworks. Energy Technol. 2018, 6, 578.
    [67] Zacharia, R.; Cossement, D.; Lafi, L.; Chahine, R. Volumetric hydrogen sorption capacity of monoliths prepared by mechanical densification of MOF-177. J. Mater. Chem. 2010, 20, 2145-2151.
    [68] Furukawa, H.; Miller, M. A.; Yaghi, O. M. Independent verification of the saturation hydrogen uptake in MOF-177 and establishment of a benchmark for hydrogen adsorption in metal-organic frameworks. J. Mater. Chem. 2007, 17, 3197-3204.
    [69] Furukawa, H.; Ko, N.; Go, Y. B.; Aratani, N.; Choi, S. B.; Choi, E.; Yazaydin, A. O.; Snurr, R. Q.; O'Keeffe, M.; Kim, J.et al. Ultrahigh porosity in metal-organic frameworks. Science 2010, 329, 424.
    [70] Ali Akbar Razavi, S.; Morsali, A. Linker functionalized metal-organic frameworks. Coord. Chem. Rev. 2019, 399, 213023.
    [71] Lee, H. J.; We, J.; Kim, J. O.; Kim, D.; Cha, W.; Lee, E.; Sohn, J.; Oh, M. Morphological and structural evolutions of metal-organic framework particles from amorphous spheres to crystalline hexagonal rods. Angew. Chem. 2015, 54, 10564.
    [72] Stock, N.; Biswas, S. Synthesis of metal-organic frameworks (MOFs): Routes to various MOF topologies, morphologies, and composites. Chem. Rev. 2012, 112, 933.
    [73] Hwang, J.; Yan, R.; Oschatz, M.; Schmidt, B. V. K. J. Solvent mediated morphology control of zinc MOFs as carbon templates for application in supercapacitors. J. Mater. Chem. A 2018, 6, 23521.
    [74] Yang, J. M.; Liu, Q.; Kang, Y. S.; Sun, W. Y. Controlled growth and gas sorption properties of IRMOF-3 nano/microcrystals. Dalton Trans. 2014, 43, 16707.
    [75] Liu, Q.; Jin, L. N.; Sun, W. Y. Facile fabrication and adsorption property of a nano/microporous coordination polymer with controllable size and morphology. Chem. Commun. 2012, 48, 8814.
    [76] Pan, Y.; Heryadi, D.; Zhou, F.; Zhao, L.; Lestari, G.; Su, H.; Lai, Z. Tuning the crystal morphology and size of zeolitic imidazolate framework-8 in aqueous solution by surfactants. Cryst. Eng. Comm. 2011, 13, 6937.
    [77] Cai, X.; Lin, J.; Pang, M. Facile synthesis of highly uniform Fe-MIL-88B particles. Cryst. Growth Des. 2016, 16, 3565.
    [78] Yu, X. Y.; Yu, L.; Wu, H. B.; Lou, X. W. Formation of nickel sulfide nanoframes from metal-organic frameworks with enhanced pseudocapacitive and electrocatalytic properties. Angew. Chem. Int. Ed. Engl. 2015, 54, 5331.
    [79] Yilmaz, G.; Tan, C. F.; Hong, M.; Ho, G. W. Functional defective metal-organic coordinated network of mesostructured nanoframes for enhanced electrocatalysis. Adv. Funct. Mater. 2018, 28, 1704177.
    [80] Guo, Y.; Tang, J.; Wang, Z.; Kang, Y-M.; Bando, Y.; Yamauchi, Y. Elaborately assembled core-shell structured metal sulfides as a bifunctional catalyst for highly efficient electrochemical overall water splitting. Nano Energy 2018, 47, 494.
    [81] Catala, L.; Mallah, T. Nanoparticles of Prussian blue analogs and related coordination polymers: From information storage to biomedical applications. Coord. Chem. Rev. 2017, 346, 32-61.
    [82] Uyeda, N,; Nishino, M.; Suito, E. Nucleus interaction and fine structures of colloidal gold particles. J. Colloid Interface Sci., 1973, 43, 264-276.
    [83] Porter, D. A.; Easterling, K. E.; Sherif, M. Y. Transformations in metals and alloys, CRC Pr I Llc, 2009.
    [84] Camuffo, D. Microclimate for cultural heritage 3rd edition, Elsevier Science, 2019.
    [85] Van Vleet, M. J.; Weng, T.; Li, X.; Schmidt, J. R. In Situ, Time-resolved, and mechanistic studies of metal-organic framework nucleation and growth. Chem. Rev. 2018, 118, 3681.
    [86] Feng, L.; Wang, K.-Y.; Powell, J.; Zhou, H-C. Controllable synthesis of metal-organic frameworks and their hierarchical assemblies. Matter 2019, 1, 801-824.
    [87] Guo, Y.; Wang, T.; Chen, J.; Zheng, J.; Li, X.; Ostrikov, K. K. Air plasma activation of catalytic sites in a metal-cyanide framework for efficient oxygen evolution reaction. Adv. Energy Mater. 2018, 8, 1800085.
    [88] Vazquez-Gonzalez, M.; Torrente-Rodriguez, R. M.; Kozell, A.; Liao, W. C.; Cecconello, A.; Campuzano, S.; Pingarron, J. M.; Willner, I. Mimicking peroxidase activities with Prussian blue nanoparticles and their cyanometalate structural analogues. Nano Lett 2017, 17, 4958-4963.
    [89] Lee, H. G. Chemical thermodynamics for metals and materials, Imperial College Press, 1999.
    [90] Yuan, B.; Luan, W.; Tu, S.-t.; Wu, J. One-step synthesis of pure pyrite FeS2 with different morphologies in water. New J Chem 2015, 39, 3571.
    [91] You, B.; Sun, Y. Innovative strategies for electrocatalytic water splitting. Acc. Chem. Res. 2018, 51, 1571-1580.
    [92] Hunter, B. M.; Gray, H. B.; Müller, A. M. Earth-abundant heterogeneous water oxidation catalysts. Chem. Rev. 2016, 116, 14120-14136.
    [93] Lewis, N. S.; Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. PNAS 2007, 104, 15729-15735.
    [94] Chen, Z.; Wei, W.; Ni, B. J. Cost-effective catalysts for renewable hydrogen production via electrochemical water splitting: Recent advances. Curr. Opin. Green Sustain. Chem. 2021, 27, 100398.
    [95] Trasatti, S. Water electrolysis: Who first? J. Electroanal. Chem. 1999, 476, 90-91.
    [96] Martín-Yerga, D. Calling all electrochemists: Make Electrochemistry great again! 2019.
    [97] Wang, J.; Yue, X.; Yang, Y.; Sirisomboonchai, S.; Wang, P.; Ma, X.; Abudula, A.; Guan, G. Earth-abundant transition-metal-based bifunctional catalysts for overall electrochemical water splitting: A review. J. Alloys Compd. 2020, 819, 153346.
    [98] Wei, C.; Rao, R. R.; Peng, J.; Huang, B.; Stephens, I. E. L.; Risch, M.; Xu, Z. J.; Shao-Horn, Y. Recommended practices and benchmark activity for hydrogen and oxygen electrocatalysis in water splitting and fuel cells. Adv. Mater. 2019, 31, 1806296.
    [99] Kühl, S.; Strasser, P. Oxygen electrocatalysis on dealloyed Pt nanocatalysts. Top. Catal. 2016, 59, 1628.
    [100] Bard, A. J.; Faulkner, L. R. Electrochemical methods and applications 2nd edition, Wiley-Interscience, 2000.
    [101] Wang, J. Analytical Electrochemistry 2nd ed., Wiley-VCH, 2000.
    [102] Liang, Q.; Chen, J.; Wang, F.; Li, Y. Transition metal-based metal-organic frameworks for oxygen evolution reaction. Coord. Chem. Rev. 2020, 424, 213488.
    [103] Li, S.; Gao, Y.; Li, N.; Ge, L.; Bu, X.; Feng, P. Transition metal-based bimetallic MOFs and MOF-derived catalysts for electrochemical oxygen evolution reaction. Energy Environ. Sci. 2021, 14, 1897-1927.
    [104] Shi, Q.; Fu, S.; Zhu, C.; Song, J.; Du, D.; Lin, Y. Metal-organic frameworks-based catalysts for electrochemical oxygen evolution. Mater. Horiz. 2019, 6, 684-702.
    [105] Zhou, H.; Zheng, M.; Tang, H.; Xu, B.; Tang, Y.; Pang, H. Amorphous intermediate derivative from ZIF-67 and its outstanding electrocatalytic activity. Small 2020, 16, 1904252.
    [106] Lu, X. F.; Xia, B. Y.; Zang, S. Q.; Lou, X. W. D. Metal-organic frameworks based electrocatalysts for the oxygen reduction reaction. Angew. Chem. Int. Ed. 2020, 59, 4634.
    [107] Wu, H. B.; Lou, X. W. Metal-organic frameworks and their derived materials for electrochemical energy storage and conversion: Promises and challenges. Sci. Adv. 2017, 3, 9252.
    [108] Lu, F.; Zhou, M.; Zhou, Y.; Zeng, X. First-row transition metal based catalysts for the oxygen evolution reaction under alkaline conditions: Basic principles and recent advances. Small 2017, 13, 1701931.
    [109] Nai, J.; Zhang, J.; Lou, X. W. Construction of single-crystalline Prussian blue analog hollow nanostructures with tailor-able topologies. Chem 4 2018, 1967-1982.
    [110] Lian, Y.; Sun, H.; Wang, X.; Qi, P.; Mu, Q.; Chen, Y.; Ye, J.; Zhao, X.; Deng, Z.; Peng, Y. Carved nanoframes of cobalt-iron bimetal phosphide as a bifunctional electrocatalyst for efficient overall water splitting. Chem. Sci., 2019, 10, 464-474.
    [111] Zhang, H.; Zhou, W.; Dong, J.; Lu, X. F.; Lou, X. W. Intramolecular electronic coupling in porous iron cobalt (oxy)phosphide nanoboxes enhances the electrocatalytic activity for oxygen evolution. Energy Environ. Sci. 2019, 12, 3348.
    [112] Cao, L. M.; Lu, D.; Zhong, D. C.; Lu, T. B. Prussian blue analogues and their derived nanomaterials for electrocatalytic water splitting. Coord. Chem. Rev. 2020, 407, 213156.
    [113] Zhu, K.; Zhu, X.; Yang, W. Application of in situ techniques for the characterization of NiFe-based oxygen evolution reaction (OER) electrocatalysts. Angew. Chem. Int. Ed. 2019, 58, 1252-1265.
    [114] Suen, N. T.; Hung, S. F.; Quan, Q.; Zhang, N.; Xu, Y. J.; Chen, H. M. Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem. Soc. Rev. 2017, 46, 337-365.
    [115] Reier, T.; Oezaslan, M.; Strasser, P. Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: A comparative study of nanoparticles and bulk materials. ACS Catal. 2012, 2, 1765-1772.
    [116] Li, X.; Fang, Y.; Lin, X.; Tian, M.; An, X.; Fu, Y.; Li, R.; Jin, J.; Ma, J. MOF derived Co3O4 nanoparticles embedded in N-doped mesoporous carbon layer/MWCNTs hybrids: extraordinary bi-functional electrocatalysts for OER and ORR. J. Name. 2015, 3, 17392-17402.
    [117] Alonso-Vante, N., Chalcogenide materials for energy conversion 1st edition, Springer, 2018.
    [118] Li, L.; Wang, P.; Shao, Q.; Huang, X. Metallic nanostructures with low dimensionality for electrochemical water splitting. Chem. Soc. Rev. 2020, 49, 3072-3106.
    [119] Joo, J.; Kim, T.; Lee, J.; Choi, S. I.; Lee, K. Morphology-controlled metal sulfides and phosphides for electrochemical water splitting. Adv Mater 2019, 31, 1806682.
    [120] Jin, H.; Guo, C.; Liu, X.; Liu, J.; Vasileff, A.; Jiao, Y.; Zheng, Y.; Qiao, S. Z. Emerging two-dimensional nanomaterials for electrocatalysis. Chem. Rev. 2018, 118, 6337.
    [121] Anantharaj, S.; Ede, S. R.; Karthick, K.; Sam Sankar, S.; Sangeetha, K.; Karthik, P. E.; Kundu, S. Precision and correctness in the evaluation of electrocatalytic water splitting: revisiting activity parameters with a critical assessment. Energy Environ. Sci. 2018, 11, 744.
    [122] Rossmeisl, J.; Logadottir, A.; Nørskov, J. K. Electrolysis of water on (oxidized) metal surfaces. Chem. Phys. 2005, 319, 178.
    [123] Man, I. C.; Su, H. Y.; Calle‐Vallejo, F.; Hansen, H. A.; Martínez, J. I.; Inoglu, N. G.; Kitchin, J.; Jaramillo, T. F.; Nørskov, J. K.; Rossmeisl, J. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 2011, 3, 1159.
    [124] Ganesan, P.; Sivanantham, A.; Shanmugam, S. Nanostructured nickel-cobalt-titanium alloy grown on titanium substrate as efficient electrocatalyst for alkaline eater electrolysis. ACS Appl. Mater. Interfaces 2017, 9, 12416-12426.
    [125] Cai, W.; Yang, H.; Zhang, J.; Chen, H. C.; Tao, H. B.; Gao, J.; Liu, S.; Liu, W.; Li, X.; Liu, B. Amorphous multimetal alloy oxygen evolving catalysts. ACS Mater. Lett. 2020, 2, 624-632.
    [126] Liu, Q.; Zhao, H.; Jiang, M.; Kang, Q.; Zhou, W.; Wang, P.; Zhou, F. Boron enhances oxygen evolution reaction activity over Ni foam-supported iron boride nanowires. J. Mater. Chem. A 2020, 8, 13638.
    [127] Osaka, T.; Ishibashi, H.; Endo, T.; Yoshida, T. Oxygen evolution reaction on transition metal borides. Electrochim. Acta 1981, 26, 339-343.
    [128] Masa, J.; Weide, P.; Peeters, D.; Sinev, I.; Xia, W.; Sun, Z.; Somsen, C.; Muhler, M.; Schuhmann, W. Amorphous cobalt boride (Co2B) as a highly efficient nonprecious catalyst for electrochemical water splitting: Oxygen and hydrogen evolution. Adv. Energy Mater. 2016, 6, 1502313.
    [129] Gupta, S.; Patel, M. K.; Miotello, A.; Patel, N. Metal boride‐based catalysts for electrochemical water‐splitting: A review. Adv. Funct. Mater. 2019, 30, 1906481.
    [130] Wang, H.; Zhu, S.; Deng, J.; Zhang, W.; Feng, Y.; Ma, J. Transition metal carbides in electrocatalytic oxygen evolution reaction. Chin. Chem. Lett. 2021, 32, 291-298.
    [131] Zhu, S.; Lei, J.; Zhang, L.; Lu, L. Efficient electrocatalytic oxygen evolution by Fe3C nanosheets perpendicularly grown on 3D Ni foams. Int. J. Hydrog. Energy 2019, 44, 16507.
    [132] Tang, Y. J.; Liu, C. H.; Huang, W.; Wang,X. L.; Dong,L. Z.; Li, S. L.; Lan, Y. Q. Bimetallic carbides-based nanocomposite as superior electrocatalyst for oxygen evolution reaction. ACS Appl. Mater. Interfaces 2017, 9, 16977-16985.
    [133] Dong, T.; Zhang, X.; Cao, Y.; Chen, H. S.; Yang, P. Ni/Ni3C core-shell nanoparticles encapsulated in N-doped bamboo-like carbon nanotubes towards efficient overall water splitting. Inorg. Chem. Front. 2019, 6, 1073.
    [134] Yu, L.; Zhu, Q.; Song, S.; McElhenny, B.; Wang, D.; Wu, C.; Qin, Z.; Bao, J.; Yu, Y.; Chen, S.et al. Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis. Nat Commun 2019, 10, 5106.
    [135] Zhang, Y.; Ouyang, B.; Xu, J.; Chen, S.; Rawat, R. S.; Fan, H. J. 3D porous hierarchical nickel-molybdenum nitrides synthesized by RF plasma as highly active and stable hydrogen-evolution-reaction electrocatalysts. Adv. Energy Mater. 2016, 6, 1600221.
    [136] Wang, Y.; Kong, B.; Zhao, D.; Wang, H.; Selomulya, C. Strategies for developing transition metal phosphides as heterogeneous electrocatalysts for water splitting. Nano Today 2017, 15, 26.
    [137] Laursen, A. B.; Patraju, K. R.; Whitaker, M. J.; Retuerto, M.; Sarkar, T.; Yao, N.; Ramanujachary, K. V.; Greenblatt, M.; Dismukes, G. C. Nanocrystalline Ni5P4: A hydrogen evolution electrocatalyst of exceptional efficiency in both alkaline and acidic media. Energy Environ. Sci. 2015, 8, 1027-1034.
    [138] Guo, D.; Kang, H.; Wei, P.; Yang, Y.; Hao, Z.; Zhang, Q.; Liu, L. A high-performance bimetallic cobalt iron oxide catalyst for the oxygen evolution reaction. CrystEngComm 2020, 22, 4317.
    [139] Pan, S.; Mao, X.; Yu, J.; Hao, L.; Du, A.; Li, B. Remarkably improved oxygen evolution reaction activity of cobalt oxides by an Fe ion solution immersion process. Inorg. Chem. Front. 2020, 7, 3327.
    [140] Hu, C.; Zhang, L.; Gong, J. Recent progress made in the mechanism comprehension and design of electrocatalysts for alkaline water splitting. Energy Environ. Sci. 2019, 12, 2620.
    [141] Kim, J. S.; Kim, B.; Kim, H.; Kang, K. Recent progress on multimetal oxide catalysts for the oxygen evolution reaction. Adv. Energy Mater. 2018, 8, 1702774.
    [142] Guo, Y.; Park, T.; Yi, J. W.; Henzie, J.; Kim, J.; Wang, Z.; Jiang, B.; Bando, Y.; Sugahara, Y.; Tang, J.et al. Nanoarchitectonics for transition-metal-sulfide-based electrocatalysts for water splitting. Adv Mater 2019, 31, 1807134.
    [143] Shi, J.; Ma, D.; Han, G. F.; Zhang, Y.; Ji, Q.; Gao, T.; Sun, J.; Song, X.; Li, C.; Zhang, Y.; Lang, X. Y.; Zhang, Y.; Liu, Z. Controllable growth and transfer of monolayer MoS2 on Au foils and its potential application in hydrogen evolution reaction. ACS Nano 2014, 8, 10196-10204.
    [144] Faber, M. S.; Dziedzic, R.; Lukowski, M. A.; Kaiser, N. S.; Ding, Q.; Jin, S. High-performance electrocatalysis using metallic cobalt pyrite (CoS2) micro- and nanostructures. J. Am. Chem. Soc. 2014, 136, 10053.
    [145] Nemiwal, M.; Gosu, V.; Zhang, T. C.; Kumar, D. Metal organic frameworks as electrocatalysts: Hydrogen evolution reactions and overall water splitting. Int. J. Hydrog. Energy 2021, 46, 10216.
    [146] Tripathy, R. K.; Samantara, A. K.; Behera, J. N. Cobalt metal organic framework (Co-MOF): A bi-functional electro active material for oxygen evolution and reduction reaction. Dalton Trans. 2019, 48, 10557-10564.
    [147] Qian, Q.; Li, Y.; Liu, Y.; Yu, L.; Zhang, G. Ambient fast synthesis and active sites deciphering of hierarchical foam-like trimetal-organic framework nanostructures as a platform for highly efficient oxygen evolution electrocatalysis. Adv Mater 2019, 31, 1901139.
    [148] Duan, J.; Chen, S.; Zhao, C. Ultrathin metal-organic framework array for efficient electrocatalytic water splitting. Nat Commun 2017, 8, 15341.
    [149] Yang, M.; Zhou, Y. N.; Cao, Y. N.; Tong, Z.; Dong, B.; Chai, Y. M. Advances and challenges of Fe-MOFs based materials as electrocatalysts for water splitting. Appl. Mater. Today 2020, 20, 100692.
    [150] Zhao, X.; Pattengale, B.; Fan, D.; Zou, Z.; Zhao, Y.; Du, J.; Huang, J.; Xu, C. Mixed-node metal-organic frameworks as efficient electrocatalysts for oxygen evolution reaction. ACS Energy Lett. 2018, 3, 2520-2526.
    [151] Cao, L. M.; Hu, Y. W.; Tang, S. F.; Iljin, A.; Wang, J. W.; Zhang, Z. M.; Lu, T. B. Fe-CoP electrocatalyst derived from a bimetallic Prussian blue analogue for large-current-density oxygen evolution and overall water splitting. Adv Sci 2018, 5, 1800949.
    [152] Sidhureddy, B.; Dondapati, J. S.; Chen, A. Shape-controlled synthesis of Co3O4 for enhanced electrocatalysis of the oxygen evolution reaction. Chem. Commun. 2019, 55, 3626.
    [153] Bao, J.; Zhang, X.; Fan, B.; Zhang, J.; Zhou, M.; Yang, W.; Hu, X.; Wang, H.; Pan, B.; Xie, Y. Ultrathin spinel-structured nanosheets rich in oxygen deficiencies for enhanced electrocatalytic water oxidation. Angew. Chem. Int. Ed. 2015, 54, 7399.
    [154] Wang, C.; Yang, H.; Zhang, Y.; Wang, Q. NiFe alloy nanoparticles with hcp crystal structure stimulate superior oxygen evolution reaction electrocatalytic activity. Angew. Chem. Int. Ed. Engl. 2019, 58, 6099.
    [155] Cheng, H.; Yang, N.; Lu, Q.; Zhang, Z.; Zhang, H. Syntheses and properties of metal nanomaterials with novel crystal phases. Adv Mater 2018, 30, 1707189.
    [156] Cao, Z.; Chen, Q.; Zhang, J.; Li, H.; Jiang, Y.; Shen, S.; Fu, G.; Lu, B. A.; Xie, Z.; Zheng, L. Platinum-nickel alloy excavated nano-multipods with hexagonal close-packed structure and superior activity towards hydrogen evolution reaction. Nat Commun 2017, 8, 15131.
    [157] Kim, J.; Lee, Y. Sun, S. Structurally ordered FePt nanoparticles and their enhanced catalysis for oxygen reduction reaction. J. Am. Chem. Soc. 2010, 132, 4996.
    [158] Wu, Y., Controlled synthesis of Pt-Ni bimetallic catalysts and study of their catalytic properties, Springer Nature, 2016.
    [159] Swiegers, G. F.; Malefetse, T. G. New self-assembled structural motifs in coordination chemistry. Chem. Rev. 2000, 100, 3483-3537.
    [160] Li, T.; Li, G. H.; Li, L. H.; Liu, L.; Xu, Y.; Ding, H. Y.; Zhang, T. Large-scale self-assembly of 3D flower-like hierarchical Ni/Co-LDHs microspheres for high-performance flexible asymmetric supercapacitors. ACS Appl. Mater. Interfaces 2016, 8, 2562-2572.
    [161] Ji, S.; Li, T.; Gao, Z. D.; Song, Y. Y.; Xu, J. J. Boosting the oxygen evolution reaction performance of CoS2 microspheres by subtle ionic liquid modification. Chem. Commun. 2018, 54, 8765-8768.
    [162] Piernas-Muñoz, M. J.; Castillo-Martínez, E.; Bondarchuk, O.; Armand, M.; Rojo, T. Higher voltage plateau cubic Prussian white for Na-ion batteries. J. Power Sources 2016, 324, 766-773.
    [163] Wu, Q.; Wu, G.; Wang, L.; Hu, W.; Wu, H. Facile synthesis and optical properties of Prussian blue microcubes and hollow Fe2O3 microboxes. Mater. Sci. Semicond. Process. 2015, 30, 476-481.
    [164] de Leeuw, N. H.; Rabone, J. A. L. Molecular dynamics simulations of the interaction of citric acid with the hydroxyapatite (0001) and 011¯0 surfaces in an aqueous environment. CrystEngComm 2007, 9, 1178-1186.
    [165] Di, W.; Willinger, M. G.; Ferreira, R. A. S.; Ren, X.; Lu, S.; Pinna, N. Citric acid-assisted hydrothermal synthesis of luminescent TbPO4:Eu nanocrystals: Controlled morphology and tunable emission. J. Phys. Chem. C 2008, 112, 18815-18820.
    [166] Martindale, B. C. M.; Reisner, E. Bi-functional iron-only electrodes for efficient water splitting with enhanced stability through in situ electrochemical regeneration. Adv. Energy Mater. 2016, 6, 1502095.
    [167] Ci, S.; Mao, S.; Hou, Y.; Cui, Y.; Kim, H.; Ren, R.; Wen, Z.; Chen, J. Rational design of mesoporous NiFe-alloy-based hybrids for oxygen conversion electrocatalysts. J. Name. 2015, 3, 7986-7993
    [168] Zhao, W.; Zhang, C.; Geng, F.; Zhuo, S. Zhang, B. Nanoporous hollow transition metal chalcogenide nanosheets synthesized via the anion-exchange reaction of metal hydroxides with chalcogenide ions. ACS Nano 2014, 8, 10909-10919.
    [169] Fan, K.; Zou, H.; Lu, Y.; Chen, H.; Li, F.; Liu, J.; Sun, L.; Tong, L.; Toney, M. F.; Sui, M.; Yu, J. Direct observation of structural evolution of metal chalcogenide in electrocatalytic water oxidation. ACS Nano 2018, 12, 12369-12379.
    [170] Zhao, Z.; Wu, H.; He, H.; Xu, X.; Jin, Y. A high-performance binary Ni-Co hydroxide-based water oxidation electrode with three-dimensional coaxial nanotube array structure. Adv. Funct. Mater. 2014, 24, 4698-4705.
    [171] Xiao, C.; Lu, X.; Zhao, C. Unusual synergistic effects upon incorporation of Fe and/or Ni into mesoporous Co3O4 for enhanced oxygen evolution. Chem. Commun. 2014, 50, 10122-10125.
    [172] Du, B.; Meng, Q. T.; Sha, J. Q.; Li, J. S. Facile synthesis of FeCo alloys encapsulated in nitrogen-doped graphite/carbon nanotube hybrids: efficient bi-functional electrocatalysts for oxygen and hydrogen evolution reactions. New J. Chem. 2018, 42, 3409-3414.
    [173] Shi, Q.; Liu, Q.; Ma, Y.; Fang, Z.; Liang, Z.; Shao, G.; Tang, B.; Yang, W.; Qin, L.; Fang, X. High-performance trifunctional electrocatalysts based on FeCo/Co2P hybrid nanoparticles for zinc-air battery and self-powered overall water splitting. Adv. Energy Mater. 2020, 10, 1903854.
    [174] Saha, S.; Ganguli, A. K. FeCoNi alloy as noble metal-free electrocatalyst for oxygen evolution reaction (OER). ChemistrySelect 2017, 2, 1630-1636.
    [175] Zhang, H.; Zheng, J.; Chao, Y. Zhang, K.; Zhu, Z. Surface engineering of FeCo-based electrocatalysts supported on carbon paper by incorporating non-noble metals for water oxidation. New J. Chem. 2018, 42, 7254-7261.
    [176] Qian, L.; Lu, Z.; Xu, T.; Wu, X.; Tian, Y.; Li, Y.; Huo, Z.; Sun, X.; Duan, X. Trinary layered double hydroxides as high-performance bifunctional materials for oxygen electrocatalysis. Adv. Energy Mater. 2015, 5, 1500245.
    [177] Yang, Q.; Li, T.; Lu, Z.; Sun, X. Liu, J. Hierarchical construction of an ultrathin layered double hydroxide nanoarray for highly-efficient oxygen evolution reaction. Nanoscale 2014, 6, 11789-11794.
    [178] Rajan, A. G.; Martirez, J. M. P.; Carter, E. A. Facet-independent oxygen evolution activity of pure β‑NiOOH: Different chemistries leading to similar overpotentials. J. Am. Chem. Soc. 2020, 142, 3600-3612.
    [179] Xu, X.; Chen, Y.; Zhou, W.; Zhu, Z.; Su, C.; Liu, M.; Shao, Z. A perovskite electrocatalyst for efficient hydrogen evolution reaction. Adv. Mater. 2016, 28, 6442-6448.
    [180] Duan, J.; Chen, S.; Chambers, B. A.; Andersson, G. G.; Qiao, S. Z. 3D WS2 nanolayers@heteroatom-doped graphene films as hydrogen evolution catalyst electrodes. Adv. Mater. 2015, 27, 4234-4241.
    [181] Liao, L.; Zhu, J.; Bian, X.; Zhu, L.; Scanlon, M. D.; Girault, H. H.; Liu, B. MoS2 formed on mesoporous graphene as a highly active catalyst for hydrogen evolution. Adv. Funct. Mater. 2013, 23, 5326.

    無法下載圖示 全文公開日期 2026/07/15 (校內網路)
    全文公開日期 2026/07/15 (校外網路)
    全文公開日期 2026/07/15 (國家圖書館:臺灣博碩士論文系統)
    QR CODE