簡易檢索 / 詳目顯示

研究生: 施松佑
SONG YOU SHIH
論文名稱: 使用電容交換技術之低功耗 逐次逼近式類比數位轉換器設計
Low-Power SAR ADC Design using Capacitor-Swapping Techniques
指導教授: 鍾勇輝
Yung-Hui Chung
口試委員: 曾偉信
Wei-hsin.tseng
范振麟
Jenlin.fan
陳亮仁
none
陳筱青
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 89
中文關鍵詞: 電容交換技術逐次逼近式類比數位轉換器
外文關鍵詞: Capacitor-Swapping
相關次數: 點閱:626下載:24
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文分別實現十位元、每秒一億萬次取樣之逐漸逼近式類比數位轉換器和十二位元、每秒一億萬次取樣之逐漸逼近式類比數位轉換器。使用二進位加權電容陣列來達到十二位元的精確度,並採用所提出之電容交換技術改善線性度和電容面積,取樣保持電路包含靴帶式電路及消除基體效應之控制開關以提升取樣開關線性度。使用N型輸入的動態比較器能有較佳的比較速度,非同步式控制邏輯可以避免需要使用到額外的高速外部時脈,並有效分配比較周期所需時間。


    This thesis presents a 1.2-V 10-bit 100MS/s successive approximation register (SAR) analog-to-digital converter (ADC) implemented and 1.2-V 12-bit 100MS/s successive approximation register analog-to-digital converter. By applying a Capacitor-Swapping Techniques that improve DAC linearity and reduce the area of DAC, so the proposed SAR ADC can achieve lower power consumption. In order to avoid using an external high frequency clock circuit to drive the ADC, asynchronous control logic is used A N-type dynamic latch comparator have high comparison speed. A bootstrapped switch with body effect reduction technique in the track-Hold circuit can further increase the sample linearity of the ADC.

    Abstract ii 誌謝 iv Contents v List of Figures viii List of Tables xi Chapter 1 Introduction - 1 - 1.1 Motivation - 1 - 1.2 Focus and Contributions - 2 - 1.3 Organization of This Thesis - 3 - Chapter 2 Fundamentals of Analog-to-Digital Converter - 4 - 2.1 Basic Concepts - 4 - 2.1.1 Differential Nonlinearity (DNL) - 4 - 2.1.2 Offset Error - 5 - 2.1.3 Gain Error - 6 - 2.1.4 Missing Codes - 6 - 2.1.5 Integral Nonlinearity (INL) - 7 - 2.1.6 Signal-to-Noise Ratio (SNR) - 8 - 2.1.7 Signal-to-Noise and Distortions Ratio (SNDR) - 9 - 2.1.8 Spurious Free Dynamic Range(SFDR) - 9 - 2.1.9 Resolution and Effective Number of Bits (ENOB) - 9 - 2.1.10 Coherent Sampling - 10 - 2.2 Architectures of Analog-to-Digital Converters - 10 - 2.2.1 Flash ADC - 10 - 2.2.2 SAR ADC - 12 - 2.2.3 Pipelined ADC - 13 - 2.2.4 Time-Interleaved ADC - 14 - 2.2.5 Architecture Comparison - 15 - 2.3 Summary - 16 - Chapter 3 Characteristics of High-Speed SAR ADCs - 17 - 3.1 Conventional SAR ADC - 17 - 3.2 Self-Timed Operation - 20 - 3.3 Monotonic Switching - 21 - 3.4 Error Tolerance - 22 - 3.5 Summary - 24 - CHAPTER 4 Capacitor-Swapping Techniques - 26 - 4.1 Capacitor Mismatch - 26 - 4.2 Capacitor-Swapping - 28 - 4.3 Two-Level Capacitor-Swapping - 31 - CHAPTER 5 A 10-bit 100-MS/s Capacitor-Swapping SAR ADC - 37 - 5.1 Introduction - 37 - 5.2 ADC Architecture - 38 - 5.3 Circuit Level Design - 39 - 5.3.1 Sample and Hold Circuit - 39 - 5.3.2 Comparator - 44 - 5.3.3 Digital to Analog Converter - 45 - 5.3.3.a Switching back method - 45 - 5.3.3.b KT/C noise - 48 - 5.3.3.c Capacitor Mismatch - 49 - 5.3.3.d DAC Array Swapping - 51 - 5.3.4 SAR Controller - 52 - 5.3.4.a Asynchronous Logic - 52 - 5.4 Capacitor-Swapping SFDR Comparison - 53 - 5.5 Simulation Results - 54 - 5.6 Measurement Results - 55 - 5.6.1 Measurement Considerations - 55 - 5.6.2 Measurement Results - 57 - 5.7 Debug of this Work - 61 - 5.8 Conclusions - 62 - CHAPTER 6 A 12-bit 100-MS/s Two-Level Capacitor-Swapping SAR ADC - 64 - 6.1 Introduction - 64 - 6.2 ADC Architecture - 65 - 6.3 Circuit Level Design - 67 - 6.3.1 Sample and Hold Circuit - 67 - 6.3.2 Comparator - 69 - 6.3.3 Digital to Analog Converter - 71 - 6.3.3.a KT/C noise - 71 - 6.3.3.b Capacitor Mismatch - 71 - 6.3.3.c DAC Array of Swapping - 72 - 6.3.3.d Placement of Capacitors - 74 - 6.3.3.e Unit Capacitors - 75 - 6.3.4 SAR Controller - 76 - 6.3.4.a Asynchronous Logic - 76 - 6.4 Capacitor-Swapping SFDR Comparison - 77 - 6.5 Simulation Results - 79 - 6.6 Conclusions - 83 - CHAPTER 7 Conclusions and Future Work - 85 - 7.1 Conclusions - 85 - 7.2 Future Work - 86 - References - 88 -

    J. I. Kim, D. R. Oh, D. S. Jo, B. R. S. Sung and S. T. Ryu, "A 65 nm CMOS 7b 2 GS/s 20.7 mW Flash ADC With Cascaded Latch Interpolation," in IEEE Journal of Solid-State Circuits, vol. 50, no. 10, pp. 2319-2330, Oct. 2015.
    H. Y. Chang and C. Y. Yang, "A Reference Voltage Interpolation-Based Calibration Method for Flash ADCs," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 24, no. 5, pp. 1728-1738, May 2016.
    W. H. Tseng, W. L. Lee, C. Y. Huang and P. C. Chiu, "A 12-bit 104-MS/s SAR ADC in 28nm CMOS for digitally-assisted wireless transmitters," Solid-State Circuits Conference (A-SSCC), 2015 IEEE Asian, Xiamen, 2015, pp. 1-4.
    P. Harikumar and J. J. Wikner, "Design of a reference voltage buffer for a 10-bit 50 MS/s SAR ADC in 65 nm CMOS," 2015 IEEE International Symposium on Circuits and Systems (ISCAS), Lisbon, 2015, pp. 249-252.
    Y. Miyahara, M. Sano, K. Koyama, T. Suzuki, K. Hamashita and B. S. Song, "A 14b 60 MS/s Pipelined ADC Adaptively Cancelling Opamp Gain and Nonlinearity," in IEEE Journal of Solid-State Circuits, vol. 49, no. 2, pp. 416-425, Feb. 2014.
    H. H. Boo, D. S. Boning and H. S. Lee, "A 12b 250 MS/s Pipelined ADC With Virtual Ground Reference Buffers," in IEEE Journal of Solid-State Circuits, vol. 50, no. 12, pp. 2912-2921, Dec. 2015.
    Y. Duan and E. Alon, "A 12.8 GS/s Time-Interleaved ADC With 25 GHz Effective Resolution Bandwidth and 4.6 ENOB," in IEEE Journal of Solid-State Circuits, vol. 49, no. 8, pp. 1725-1738, Aug. 2014.
    B. R. S. Sung et al., "26.4 A 21fJ/conv-step 9 ENOB 1.6GS/S 2× time-interleaved FATI SAR ADC with background offset and timing-skew calibration in 45nm CMOS," 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers, San Francisco, CA, 2015, pp. 1-3.
    C.-C. Liu, S-J. Chang, G.Y. Hung, and Y.-Z. Lin, “A 10-bit 50-MS/s SAR ADC with a Monotonic Capacitor Switching Procedure,” IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 45, NO. 4, APRIL 2010
    C.-C. Liu, S-J. Chang, G.Y. Hung, and Y.-Z. Lin, “A 10b 100MS/s 1.13mW SAR ADC with Binary-Scaled Error Compensation,” IEEE International Solid-State Circuits Conference, SESSION 21, SUCCESSIVE-APPROXIMATION ADCs, 21.5
    Y.-H. Chung.M.-H.Wu.H.-S.Li, “A 12-bit 8.47-fJ/Conversion-Step Capacitor-Swapping SAR ADC in 110-nm CMOS,” IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 62, NO. 1, JANUARY 2015
    C.-H. Lin and K. Bult, “A 10-b 500-MSample/s CMOS DAC in 0.6〖 mm〗^2 ,” IEEE J. Solid-State Circuits, vol. 33, no. 12, pp. 1948–1958, Dec. 1998
    B. P. Ginsburg and A. P. Chandrakasan, “A 500 MS/s 5 b ADC in 65-nm CMOS,” in IEEE Symp. VLSI Circuits, Jun. 2007, pp. 174–175.
    Y. K. Chang, C. S. Wang, and C. K. Wang, “A 8-bit 500 KS/s low power SAR ADC for bio-medical application,” in IEEE ASSCC Dig. Tech. Papers, Nov. 2007, pp. 228–231
    V. Hariprasath, et al., “Merged Capacitor Switching Based SAR ADC with Highest Switching Energy-Efficiency,” IET Electronics Letters, Apr. 2010.
    Bob Verbruggen, et al.,” A 70 dB SNDR 200 MS/s 2.3 mW dynamic pipelined SAR ADC in 28nm digital CMOS,” in IEEE Symp. VLSI Circuits
    Yuan Zhou, Benwei Xu, and Yun Chiu, “A 12b 160MS/s Synchronous Two-Step SAR ADC Achieving 20.7fJ/step FoM with Opportunistic Digital Background Calibration,” VLSI Circuits, Jun. 2014.
    C.-C. Liu, “A 0.35mW 12b 100MS/s SAR-Assisted Digital Slope ADC in 28nm CMOS,” IEEE International Solid-State Circuits Conference, SESSION 27 HYBRID AND NYQUIST DATA CONVERTERS, 27.4
    M. Inerfield et al., “An 11.5-ENOB 100-MS/s 8mW dual-reference SAR ADC in 28nm CMOS,” Symp VLSI Circuits, June 2014.
    Y. Chen, X. Zhu, H. Tamura, M. Kibune, Y. Tomita, T. Hamada, M. Yoshioka, K. Ishikawa, T. Takayama, J. Ogawa, S. Tsukamoto, and T. Kuroda, “Split capacitor DAC mismatch calibration in successive approximation ADC,” in Proc. IEEE Custom Integr. Circuits Conf. (CICC), Sep. 2009, pp. 279–282.
    W. Liu, P. Huang, and Y. Chiu, “A 12b 22.5/45 MS/s 3.0 mW 0.059 〖mm〗^2 SAR ADC achieving over 90 dB SFDR,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2010, pp. 380–381.
    C.-C. Liu, S-J. Chang, G.Y. Hung, and Y.-Z. Lin,”10-bit 30-MS/s SAR ADC Using a Switchback Switching Method” VLSI Circuits, MARCH. 2013.
    S-J. Chang, G.Y. Hung, “A 10-bit 50MS/s SAR ADC with Techniques for Relaxing the Requirement on Driving Capability of Reference Voltage Buffers” IEEE Asian Solid-State Circuits Conference, 2013.
    M. Dessouky and A. Kaiser, "Input switch configuration suitable for rail-to-rail operation of switched op amp circuits," in Electronics Letters, vol. 35, no. 1, pp. 8-10, 7 Jan 1999.

    QR CODE