簡易檢索 / 詳目顯示

研究生: 周念祖
Nien-Tsu Chou
論文名稱: 以隨機幾何的觀點來模型化與分析行動電信網路上的交手
Modeling and Analysis of Handover in Mobile Cellular Networks: A Stochastic Geometry Perspective
指導教授: 鄭欣明
Shin-Ming Cheng
口試委員: 馮輝文
Huei-Wen Ferng
李佳翰
Chia-Han Lee
林風
Phone Lin
陳光禎
Kwang-Cheng Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 資訊工程系
Department of Computer Science and Information Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 39
中文關鍵詞: 無線網路蜂巢網路行動性交手隨機幾何
外文關鍵詞: wireless network, cellular network, mobility, handover, stochastic geometry
相關次數: 點閱:364下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 蜂巢網絡已經充斥在我們的生活中並以無縫的方式提供行動用戶各種語音和數據服務。在個人通信服務網絡中,行動裝置的通訊可能在發起通訊或切換通訊過程中 (我們稱為換手) 的過程中因為基地台資源不足和連線的的可靠性不佳被迫中斷。本篇論文利用隨機幾何的技術建置網路模型,並研究分析在個人通信服務網絡中通訊無法完成的機率。我們提出了阻擋機率和覆蓋機率兩個影響通訊完成的因素的數學分析,阻擋機率代表通訊因為資源不足而被強制終止的機率,而覆蓋機率表示在網絡系統中的連線的可靠性。我們根據從 OpenCellID 中的基地台地理位置數據進行模擬實驗以評估比較提出的隨機幾何模型與現實環境的差異。


    Cellular networks have been integrated with our lives to provide various voice and data services to mobile users in a seamless approach. In PCS (Personal Communications Services) networks, calls of portables devices may not be completed due to resource insufficiency and link reliability during the call initiation or the handover process. This paper present a study of call incomplete probability for PCS networks, using a stochastic geometry perspective. We present analytic expressions for both blocking probability and coverage probability. Blocking probability is probability that a call is forced to terminate due to resource insufficiency and coverage probability expresses the link reliability in the network system. We also conduct simulation experiments according to data from OpenCellID to comprehensively evaluate the proposed stochastic geometry model in realistic environment.

    Chinese Abstract . . . . . . . . . . . . . . . . . . . 1 Abstract . . . . . . . . . . .. . . . . . . . . . . . . 2 Table of Contents . . . . . . . . . . . . . . . . . . . 3 List of Tables . . . . . . . . . . .. . . . . . . . . . 5 List of Illustrations . . . . . . . . . . . . . . . . . 6 1 Introduction . . . . . . . . . . . . . . . . . . . . 8 2 Background and Related Works . . . . . . . . . . . . 12 2.1 Traditional Time-based Model . . . . . . . . . . . 12 2.2 Stochastic Geometry . . . . . . . . . . . . . . . . 13 2.2.1 Point process . . . . . . . . . . . . . . . . . . 14 2.2.2 Boolean model . . . . . . . . . . . . . . . . . . 14 3 Downlink System Model . . . . . . . . . . . . . . . . 16 3.1 Network Model . . . . . . . . . . .. . . . . . . . 16 3.2 Resource Allocation Model . . . . . . . . . . . . . 16 3.3 Channel Model . . . . . . . . . . . . . . . . . . . 17 3.4 Mobility Model . . . . . . . . . . . . . . . . . . 17 3.5 Performance Metric . . . . . . . . . . .. . . . . . 18 4 Analytical Closed-form Expressions . . . . . . . . . 20 4.1 Notation . . . . . . . . . . . . . . .. . . . . . . 20 4.2 Call blocking . . . . . . . . . . . . . . . . . . . 21 4.3 Call arrival failure probability . . . . . . . . . 22 34.3.1 Validation . . . . . . . . . . . . . . . . . . . 24 4.4 Handover Rate . . . . . . . . . . . . . . . . . . . 25 4.5 Call blocking Probability . . . . . . . . . . . . . 26 4.5.1 Validation . . . . . . . . . . .. . . . . . . . . 27 4.6 Coverage probability . . . . .. . . . . . . . . . . 29 4.6.1 Validation . . . . . . . . . . . . . . . . . . . 30 4.7 Call incomplete probability . . . . . . . . . . . . 30 5 Performance Evaluation . . . . . . . . . . . . . . . 32 6 Conclusions . . . . . . . . . . . . . . . . . . . . . 36 References . . . . . . . . . . . . . .. . . . . . . . . 37

    [1] “OpenCellID.” [Online]. Available: http://www.opencellid.org/
    [2] 3GPP, “E-UTRA: Further Advancements for E-UTRA Physical layer aspects,” 3GPP TR 36.814 v9.0.0, Mar. 2010.
    [3] V. A. Aalo and G. P. Efthymoglou, “Evaluation of call dropping probability for a heterogeneous wireless network with uniformly distributed handoff failure rates,” in Proc. IEEE GLOBECOM, Dec. 2010, pp. 1–5.
    [4] I. F. Akyildiz, Y. B. Lin, W. R. Lai, and R. J. Chen, “A new random walk model for PCS networks,” IEEE J. Sel. Areas Commun., vol. 18, no. 7, pp. 1254-1260, Jul. 2000.
    [5] J. G. Andrews, F. Baccelli, and R. K. Ganti, “A tractable approach to coverage and rate in cellular networks,” IEEE Trans. Commun., vol. 59, no. 11, pp. 3122–3134, Nov. 2011.
    [6] S. Buyukcorak, G. K. Kurt, and O. Cengaver, “A probabilistic framework for estimating call holding time distributions,” IEEE Trans. Veh. Technol., vol. 63, no. 2, pp. 811–821, Feb. 2014.
    [7] D. C. Cox, “Wireless personal communications: What is it,” IEEE Personal Commun. Mag., vol. 2, pp. 20–35, Apr. 1995.
    [8] Y. Fang, I. Chlamtac, and Y. B. Lin, “Call performance for a PCS network,” IEEE J. Sel. Areas Commun., vol. 15, no. 8, pp. 1568–1581, Oct. 1997.
    [9] ——, “Channel occupancy times and handoff rate for mobile computing and PCS networks,” IEEE Trans. Commun., vol. 47, no. 6, pp. 679–692, Jun. 1998.
    [10] R. K. Ganti, F. Baccelli, and J. G. Andrews, “Series expansion for interference in wireless networks,” IEEE Trans. Inf. Theory, vol. 58, no. 4, pp. 2194–2205, Apr. 2012.
    37[11] M. Haenggi, J. G. Andrews, F. Baccelli, O. Dousse, and M. Franceschetti, “Stochastic geometry and random graphs for the analysis and design of wireless networks,” IEEE J. Sel. Areas Commun., vol. 27, no. 7, pp. 1029–1045, Sep. 2009.
    [12] M. Haenggi, “Mean interference in hard-core wireless networks,” IEEE Commun. Lett., vol. 15, no. 8, pp. 792–794, Aug. 2011.
    [13] D. Hong and S. S. Rappaport, “Traffic model and performance analysis for cellular mobile radio telephone systems with prioritized and nonprioritized handoff procedures,” IEEE Trans. Veh. Technol., vol. 35, no. 3, p. 77–92, Aug. 1986.
    [14] C. H. Lee, C. Y. Shih, and Y. S. Chen, “Stochastic geometry based models for modeling cellular networks in urban areas,” Wireless Networks, Oct. 2012.
    [15] B. Li, L. Li, B. Li, K. M. Sivalingam, and X.-R. Cao, “Call admission control for voice/data integrated cellular networks: performance analysis and comparative study,” IEEE J. Sel. Areas Commun., vol. 22, no. 4, pp. 706–718, May 2000.
    [16] X. Lin, R. K. Ganti, P. J. Fleming, and J. G. Andrews, “Towards understanding the fundamentals of mobility in cellular metworks,” IEEE Trans. Wireless Commun., vol. 12, no. 4, pp. 1686–1698, Apr. 2013.
    [17] Y. B. Lin, “Performance modeling for mobile telephone networks,” IEEE Netw., vol. 1, no. 6, pp. 63–68, Nov.-Dec. 1997.
    [18] J. E. Padgett, C. G. Gunther, and T. Hattori, “Overview of wireless personal communications,” IEEE Commun. Mag., vol. 35, pp. 28–41, Jan. 1995.
    [19] I. Rhee, M. Shin, S. Hong, K. Lee, S. Kim, and S. Chong, “On the Levy-Walk nature of human mobility,” IEEE/ACM Trans. Netw., vol. 19, no. 3, pp. 630–643, 2011.
    [20] C. B. Rodriguez-Estrello, G. Hernandez-Valdez, and F. A. Cruz-Perez, “System-level analysis of mobile cellular networks considering link unreliability,” IEEE Trans. Veh. Technol., vol. 58, no. 2, pp. 926–940, Feb. 2009.
    38[21] A. Sgora and D. D. Vergados, “Handoff prioritization and decision schemes in wireless cellular networks: a survey,” IEEE Communications Surveys & Tutorials, vol. 11, no. 4, pp. 57–77, 2009.
    [22] D. Stoyan, W. S. Kendall, and J. Mecke, Stochastic geometry and its applications. John Wiley and Son, 1995.
    [23] J. Wang, Q.-A. Zeng, and D. P. Agrawal, “Performance analysis of a preemptive and priority reservation handoff scheme for integrated service-based wireless mobile networks,” IEEE Trans. Mobile Comput., vol. 2, no. 1, pp. 65–75, Jan. 2003.
    [24] D. Xenakis, L. M. N. Passas, and C. Verikoukis, “Mobility management for femtocells in LTE-Advanced: Key aspects and survey of handover decision algorithms,” IEEE Commun. Surveys Tuts., vol. 16, no. 1, pp. 64–91, Jun. 2014.
    [25] E. Zola and F. Barcelo-Arroyo, “Probability of handoff for users moving with the random waypoint mobility model,” IEEE 36th Conference on Local Computer Networks (LCN), pp. 187–190, Oct. 2011.

    無法下載圖示 全文公開日期 2019/07/09 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE