簡易檢索 / 詳目顯示

研究生: 史安菟
Sriana - Tun
論文名稱: 結合化學氣相沉積與原子層沉積法於矽晶基材上的鉑-釕觸媒沉積之研究
Combination of Chemical Vapor Deposition and Atomic Layer Deposition Method for Pt-Ru Catalyst Deposition on Si(111) Substrate
指導教授: 洪儒生
Lu-Sheng Hong
口試委員: 陳良益
Liang-Yih Chen
周賢鎧
Shyan-Kay Jou
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 111
中文關鍵詞: 原子層沉積化學氣相沉積直接甲醇燃料電池
外文關鍵詞: Atomic layer Deposition, Chemical Vapor Deposition, DMFC
相關次數: 點閱:310下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鉑釕(Pt-Ru)合金可以經由一些方法製備出,其中之一為採用薄膜製造技術。本研究宗旨在找到經由原子層沉積方法(atomic layer deposition, ALD)的鉑釕合金催化劑之反應區域。在使用ALD方法之前,我們經由化學氣相沉積(chemical vapor deposition, CVD)方法研究釕先驅物在不同基材上的反應,接著我們採用最佳的CVD條件來探討ALD的成長區域。另一方面,經由ALD方法以及利用氫氣當反應氣體來探討鉑沉積。最後我們嚐試結合CVD以及ALD技術在Si(111)基材上沉積鉑釕複合觸媒。

    我們使用(bis(ethycyclopentadienyl) ruthenium)先驅物以及經由CVD方式沉積而成的釕觸媒,在不同基材上會呈現反應動力學的不同區域以及不同的薄膜型態。我們認為這是因為釕沉積受基材吸附控制,因此沉積釕觸媒在ALD方法上較在CVD方法上難。

    接著我們利用ALD方法以及通入氫氣當作反應氣體使用三甲基環戊二烯基鉑(trimethylcyclopentadienyl)為鉑先驅物,可以在機材溫度為300℃以及350℃下沉積出接近單一原子層的鉑觸媒。在同樣暴露時間為2秒的清洗時間下,4秒的先驅物暴露時間會比6秒的先驅物暴露時間獲得更好的結果。而增加氫氣的暴露時間會導致氫氣移除先驅物而使成長速率下降。最後結合釕CVD技術以及鉑ALD技術應用在直接甲醇燃料電池(DMFC) ,我們發現利用氧氣取代氫氣當作反應氣體有更好的表現。此外,鉑觸媒的一氧化碳(CO)毒化現象經由結合CVD以及ALD技術而消失。


    Pt-Ru alloy can be produced with some methods. One of these methods is applying thin film technology. The aim of this research is to find the reaction zone of depositing Pt-Ru alloy catalyst by atomic layer deposition (ALD) method. Before using ALD method, the reactions of Ru precursor on various substrates were studied by chemical vapor deposition (CVD) method to understand the baseline of Ru-CVD. Then, we applied the baseline condition of CVD method to investigate the ALD growth regime. On the other hand, we investigated the Pt deposition by ALD method using hydrogen as the reactive gas. Finally, we tried to combine CVD and ALD method for the deposition of Pt-Ru binary catalysts on Si(111) substrate.
    Ru catalyst deposition by CVD method, the different regimes of reactions kinetics were taken place on different substrate, which resulted in different morphology of Ru catalyst by using bis(ethylcyclopentadienyl) ruthenium as precursor. Since Ru depositions were controlled by adsorption of precursor, Ru catalysts were more difficult applied by ALD method than by CVD method.
    The hydrogen was used as the reactive gas to react with trimethylcyclopentadienyl platinum for Pt ALD. Close to 1 ML deposition of Pt can be achieved at substrate temperatures of 300 and 350oC. 2s exposure time of purge obtained good result for 4s exposure time of precursor but not enough when exposure time of precursor was increased to 6s. Increasing exposure time of hydrogen as the reactive gas resulted in a quite low growth rate because the hydrogen would remove the precursor, though they might not react to each other. Combination of Ru CVD and Pt ALD methods applied in DMFCs using oxygen as reactive gas gave the better performance compared with using hydrogen gas. Moreover, the CO poison of Pt catalysts can be eliminated by the combination of Ru CVD and Pt ALD methods.

    COVER RECOMMENDATION LETTER APPROVAL LETTER ABSTRACT ACKNOWLEDGMENTS TABLE OF CONTENTS LIST OF FIGURES LIST OF TABLES CHAPTER 1 INTRODUCTION 1.1 Background 1.2 Research aim 2 LITERATURE REVIEW 2.1 Nanotechnology 2.2 Fuel cell introduction 2.3 Atomic layer deposition method 2.4 Chemical vapor deposition method 3 MATERIALS AND METHOD 3.1 Materials 3.1.1 Trimethylcyclopentadienyl platinum (IV) 3.1.2 Bis(ethylcyclopentadienyl) ruthenium 3.1.3 Oxygen 3.1.4 Nitrogen 3.1.5 Substrate 3.1.6 Aceton 3.1.7 Methanol 3.1.8 Sulfuric acid 3.1.9 Ultra pure water 3.2 Equipment 3.3 Methodology 3.4 Measurement 3.4.1 Electron spectroscopy for chemical analysis (ESCA)/ X-Ray photoelectron spectroscope (XPS) 3.4.2 Field emission scanning electron microscopy (FESEM) 3.4.3 X-ray diffraction spectrometer (XRD) 3.4.5 Cyclic voltammetry (CV) 4 RESULTS AND DISCUSSION 4.1 Ru deposition by CVD method 4.2 Ru deposition by ALD method 4.3 Pt deposition by ALD method and using hydrogen as reactive gas 4.4 Deposition of Pt-Ru catalysts by combining ALD and CVD method 5 CONCLUSION REFERENCES APPENDIX

    1. Cunningham, W, P.; Cunningham, M. A. Principal of Environmental Science. Mc. Graw-Hill Higher Education, 2nd edition, 273-327.
    2. Yuliarto, B. Solusi Kebutuhan Energi Masa Depan. Kompas. 2009. http://www2.kompas.com/kompas-cetak/0508/18/ilpeng/1981432.htm (Accessed June 6, 2009).
    3. Directorate-General for Research. Hydrogen Energy and Fuel Cell a Vision Our Future. European Commission. 2003.
    4. Kordesch, K.; Simader, G. Fuel Cells and Their Applications. Wiley-VCH, Weinheim, 1996.
    5. Apanel, G.; Johnson, E. Direct Methanol Fuel Cells Ready to Go Commercial? Fuel Cell Bulletin, 2004.
    6. Dillon, R.; Srinivasan, S.; Arico, A.S.; V. Antonucci. International Activities in DMFC R&D: Status of Technologies and Potential Applications. Journal of Power Sources, 2004, 127, 112-126.
    7. Nitani, H.; Nakagawa, T.; Daimon, H.; Kurobe, Y.; Ono, T.; Honda, Y.; Koizumi, A.; Seino, S.; Yamamoto, T. A. Methanol Oxidation Catalysis and Substructure of Pt Ru Bimetallic Nanoparticles. Appl. Catal. A Gen., 2007, 326, 194-201.
    8. Liu, F.; Lee, J.Y.; Zhou, W. J. Segmented Pt/Ru, Pt/Ni, and Pt/RuNi Nanorods as Model Bifunctional Catalysts for Methanol Oxidation. Small, 2006, 2, 121-128.
    9. Jian, X. H.; Tsai, D. S.; Chung, W. H.; Huang, Y. S.; and Liu, F. J. Pt-Ru and Pt-Mo Electrodeposited onto Ir-IrO2 Nanorods and Their Catalytic Activities in Methanol and Ethanol Oxidation. J. Mater. Chem., 2009, 19, 1601-1607.
    10. Liu, H.; Song, C.; Zhang, L.; and Zhang, J. A Review of Anode Catalyst in the Direct Methanol Fuel Cell. Journal of Power Sources, 2006, 155, 95-110.
    11. Dubau, L.; Hahn, F.; Countanceau, C.; Leger, J.M.; Lamy, C. On the Structure Effects of Bimetallic Pt Ru Electrocatalysts towards Methanol Oxidation. J. Appl. Electrochem., 2003, 33, 407-415.
    12. Lo, M.Y.; Liao, I.H.; and Huang, C.C. Key Issue in the Preparation of DMFC Electrolytes. International Journal of Hydrogen Energy, 2007, 32, 731-735..
    13. Jeng, K.T.; Chien, C.C.; Hsu, N.Y.; Yen, S. C.; Chiou, S.D.; Lin, S. H.; Huang, W.M. Performance of Direct Methanol Fuel Cell using Carbon Nanotubes-Supported Pt-Ru Anode Catalyst with Controlled Composition. Journal of Power Sources, 2006, 160, 97-104.
    14. Neergat, M.; Leveratto, D.; and Stimming, U. Catalysts for Direct Methanol Fuel Cells. Fuel Cells, 2002, 2, 25.
    15. Fuel Cell, http://en.wikipedia.org/wiki/Fuel_cell (Accessed June 1, 2009).
    16. Center for Responsible Nanotechnology. What is Nanotechnology? 2009. http://www.crnano.org/whatis.htm (Accessed June 1, 2009).
    17. Nature Nanotechnology. New Materials Old Challenges. Vol. 2, August 2007. http://www.nature.com/naturenanotechnology (Accessed June 3, 2009).
    18. Nature Nanotechnology. Nanotechnology, Energy and Market. Vol. 4, February 2009. http://www.nature.com/naturenanotechnology (Accessed June 3, 2009).
    19. Nature Nanotechnology. Culture Cognition of the Risk and Benefits of Nanotechnology. Vol. 4, February 2009. http://www.nature.com/naturenanotechnology (Accessed June 3, 2009).
    20. Nature Nanotechnology. Deliberating the Risk of Nanotechnologies for Energy and Health Applications in the United States and United Kingdom. Vol. 4, February 2009. http://www.nature.com/naturenanotechnology (Accessed June 3, 2009).
    21. Imperial College Center for Energy Policy and Technology (ICCEPT) and United National Environmental Program (UNEP). Fuel Cell Market Prospect and Intervention Strategies, 2002.
    22. EG&G Technical Service. Inc. Science Applications International Cooperation. Fuel Cell Handbook, 6th ed., 1.1 – 1.7, 2002.
    23. Steele, B.C.; Heinzel, A. Materials for Fuel-Cell Technologies. Nature, 2001, 414, 345-352.
    24. Steele, B.C. Material Science and Engineering: The Enabling Technology for the Commercialization of Fuel Cell System. Journal of Materials Science, 2001, 36, 1053-1068.
    25. Fuel Cell. Fuel Cell Basics. http://americanhistory.si.edu/fuelcells/basics.htm#q4 (Accessed May 28, 2009).
    26. Bockris, J.O.; Conway, B.E.; White, R.E. Modern Aspects of Electrochemistry, 2001, 34.
    27. Liu, X.; Suo, C.; Zhang, Y.; Zhang, H.; Chen, W.; Lu, X. Application of MEM Technology to Micro Direct Methanol Fuel Cell. TIMA editions/DTIP, 2006.
    28. FCTech. Direct Methanol Fuel Cell (DMFC). 2009. http://www.fctec.com/fctec_types_dmfc.asp (Accessed May 29, 2009).
    29. Direct Methanol Fuel Cell. http://en.wikipedia.org/wiki/Direct_methanol_fuel_cell (Accessed May 29, 2009).
    30. Wang, C.Y. Principle of Direct Methanol Fuel Cells for Portable and Micro Power. Springer Science+Business Media B.V, 2008, 235-242.
    31. Experiment 28 Direct Methanol Fuel Cell. Department of Chemistry, National Taiwan University.
    32. Aricòa, A.S.; Srinivasanb, S.; Antonucci, V. DMFCs: From Fundamental Aspects to Technology Development. Fuel Cells, 2001, 1, 133-161.
    33. Hooger, G.; Hogarth, M. Fuel Cell Technology Hand Book. Johnson Morthey Technology Center, 7-1 – 7-4, 2003.
    34. Bock, C.; Blakely, M.A.; MacDougall, B. Characteristic of Adsorbed CO and CH3OH Oxidation Reactions for Complex Pt/Ru Catalyst System. Electrochimica Acta, 2005, 50, 2401–2414.
    35. Saito, M.; Shiroishi, H.; Ono, C.; Tsuzuki, S.; Okada, T.; Uchimoto, Y. Influence of Ligand Structures on Methanol Electro-Oxidation by Mixed Catalysts Based on Platinum and Organic Metal Complexes for DMFC. Journal of Molecular Catalysis A: Chemical, 2006, 248, 99–108.
    36. Hana, D.M.; Guoa, Z.P.; Zhaoa, Z.W.; Zenga, R.; Meng, Y.Z.; Shu, D.; Liu, H.K. Polyoxometallate-Stabilized Pt-Ru Catalysts on Multiwalled Carbon Nanotubes: Influence of Preparation Conditions on the Performance of Direct Methanol Fuel Cell. Journal of Power Sources, 2008, 184, 361–369.
    37. Yang, L.X.; Bock C.; MacDougall, B.; Park, J. The Role of the WOx and Component to Pt and PtRu Catalysts in the Electrochemical CH3OH Oxidation Reaction. Journal of Applied Electrochemistry, 2004, 34, 427–438.
    38. Dillon, R.; Srinivasan, S.; Arico, A.S.; Antonucci, V. International Activities in DMFC R&D: Status of Technologies and Potential Applications. Journal of Power Sources, 2004, 127, 112–126.
    39. Chandrasekaran, J.; Wass, J. C.; Bockris, J. O. The Potential Dependence of Intermediate in Methanol Oxidation Observed in the Steady State by FTIR Spectroscopy. J. Electrochem. Soc, 1990, 137, 518-542.
    40. Gasteiger, H. A.; Markovic, N.; Ross, P. N.; Cairns, E. J. Temperature-Dependent Methanol Electro Oxidation on Well-Characterized Pt-Ru Alloys. J. Electrochemical. Soc., 1994, 141, 1795-1803.
    41. Arico, A.S.; Antonucci, P.L.; Modica, E.; Baglio, V.; Kim, H.; Antonucci, V. Effect of Pt/Ru Alloy Composition on High Temperature Methanol Electro-Oxidation”, Electrochimica Acta, 2002, 47, 3723-3732.
    42. Sun, C. L.; Chen, L. C.; Su, M. C.; Hong, L. S.; Chyan, O.; Hsu, C. Y.; Chen, K. H.; Chang, T. F.; Chang, L. Ultrafine Platinum Nanoparticles Uniformly Dispersed on Arrayed CNx Nanotubes with High Electrochemical Activity. Chem. Mater, 2005, 17, 3749-3735.
    43. Tsai, M. C.; Yeh, T. K.; Tsai, C. H. An Improved Electrodeposition Technique for Preparing Platinum and Platinum-Ruthenium Nanoparticles on Carbon Nanotubes Directly Grown on Carbon Cloth for Methanol Oxidation. Electrochemistry Communications, 2006, 8, 1445-1452.
    44. Hong, L.S.; Liu, C. S.; Lin, C. M.; Kuo, C. Y. Well-Oriented Pt-Ru Catalysts on Single Crystalline Indium Nitride Nanobelts with High Electrochemical Activity. Department of Chemical Engineering, National Taiwan University of Science and Technology
    45. Kuo, C. Y. and Hong, L, S. Atomic Layer deposition of Pt Catalyst on One Dimensional in Nanostructure. Thin Film materials Laboratory, National Taiwan University of Science and Technology, (2008)
    46. Suntola, T.; Hyvarinen. J. Annu. Rev. Mater. Sci., 1985, 15, 171-195.
    47. Suntola, T. Acta Polytech. Scand, Elect. Eng. Ser., 1989, 64, 242-270.
    48. Suntola, T. Thin Solid Films. 1992. 216, 84-89.
    49. Technology Background: Atomic Layer Deposition. IC Knowledge LLC, 2004.
    50. Leskela, M.; Ritala, M. Atomic Layer Deposition (ALD): from Precursors to Thin Film Structures. Thin Solid Film, 2002, 409, 138-146.
    51. Niinisto, L.; Paivasaari, J.; Niinisto, J.; Putkonen, M.; Nieminen, M. Advanced Electronic and Optoelectronic Materials by Atomic Layer Deposition: An Overview with Special Emphasis on Recent Progress in Processing of High-k Dielectrics and Other Oxide Materials. Phys. Stat. Sol. (a), 2004, 201, 1443-1452.
    52. Sneh, O.; Clark-Phelps, R. B.; Londergan, A. R.; Winkler, J.; Seidel, T. E. Thin Film Atomic Layer Deposition Equipment for Semiconductor Processing. Thin solid films, 2002, 402, 248–261.
    53. Pierson, H. O. Handbook of Chemical Vapor Deposition. Noyes publications, 2nd ed. 1999.
    54. Chemical Vapor Deposition. http://en.wikipedia.org/wiki/Chemical_vapor_deposition , (Accessed May 30, 2009).
    55. Chemical Vapor Deposition (CVD)-An Introduction. http://www.azom.com/Details.asp?ArticleID=1552#_Background, (Accessed May 30, 2009).
    56. Chemical Vapor Deposition Oxidation. Photonic Electronic Device Laboratory, 2006.
    57. Hiratani, M.; Nabatame, T.; Matsui, Y.; Imagawa, K.; Kimura, S. Platinum Film Growth by Chemical Vapor Deposition based on Autocatalytic Oxidative Decomposition. Journal of the Electrochemical Society. 2001, 148, 8, C524-C527.
    58. Thurier, C.; Doppelt, P. Review Platinum OMVCD Processes and Chemistry. Coordination Chemistry Reviews, 2008, 252, 155-169.
    59. Chen, Y.J.; Kaesz, H.D. Low-Temperature Organic Chemical Vapor Deposition of Platinum. Appl. Phys. Lettt., 1988, 53, 17, 1591-1592.
    60. Xue, Z.; Thridandam, H.; Kaesz, H.D.; Hicks, R.F. Organometallic Chemical Vapor Deposition of Platinum. Chem. Mater, 1992, 4, 162-166.
    61. Matsui, Y.; Hiratani, M.; Nabatame, T.; Shimamoto, Y.; Kimura, S. Growth Mechanism of Ru Films Prepared by Chemical Vapor Deposition using Bis(ethylcyclopentadienyl) Ruthenium Precursor. 2001, 4, 2, C9-C12.
    62. Matsui, Y.; Hiratani, M.; Nabatame, T. Characteristic of RutheniumFilm Prepare by Chemical Vapor Deposition using Bis(cyclopentadienyl) Ruthenium Precursor, Electrochemical and Solid-State Letter, 2002, 5, 1, C18-C21.
    63. Kwon, O. K.; Kwon, S. H.; Park, H. S.; Kanga, S.W. Plasma-Enhance Atomic Layer Deposition of Ruthenium Thin Films. Electrochemical and Solid-State Letters, 2004, 7, 4, C46-C48.
    64. Luo, B.; Wang, Q.; White, M. UHV Surface Chemistry of Bis(ethylcyclopentadienyl) Ruthenium, (C2H5C5H4)2Ru, on an Oxide Substrate”, Chem. Vap. Deposition, 2004, 10, 6, 311-316.
    65. Evans Analytical Group (EAG). X-ray Photoelectron Spectroscopy/Electron Spectroscopy for Chemical Analysis (XPS/ESCA)”, http://www.eaglabs.com/techniques/analytical_techniques/xps_esca.php, (Accessed June 7, 2009).
    66. Department of Chemistry, The University of Adelaide. X-ray Photoelectron Spectroscopy (XPS, ESCA).
    http://www.chemistry.adelaide.edu.au/external/soc-rel/content/xps.htm, (Accessed June 7, 2009).
    67. X-ray Photoelectron Spectroscopy.
    http://en.wikipedia.org/wiki/X-ray_photoelectron_spectroscopy, (Accessed June 7, 2009)
    68. Photometrics, Inc. Field Emission Scanning Electron Microscopy (FESEM). http://www.photometrics.net/fesem.html, (Accessed June 6, 2009).
    69. Experiment Developed with National Science Foundation Funding. X-Ray analysis of a Solid. http://materials.binghamton.edu/labs/xray/xray.html. (Accessed June 7, 2009).
    70. Geochemical Instrumentation and Analysis. X-ray Powder Diffraction (XRD)”, http://serc.carleton.edu/research_education/geochemsheets/techniques/XRD.html, (Accessed June 7, 2009).
    71. Nguyen, S.; Dobuzinsky, D.; Harmon, D.; Gleason, R.; Fridmann, S. Reaction Mechanisms of Plasma and Thermal Assisted Chemical Vapor Deposition of Tetraethylorthosilicate Oxide Films. J. Electrochem. Soc, 1990, 137, 2209-2215.
    72. Veprek-Heijman, M. G. J.; Boutard, D. The Hydrogen Content and Properties of SiO2 Films Deposited from Tetraethoxysilane at 27 MHz in Various Gas Mixtures. J. Electrochem. Soc, 1991, 138, 2042-2046.
    73. Gregory, B.; Cale, T. S. The Role of Oxygen Excitation and Loss in Plasma-Enhanced Deposition of Silicon Dioxide from Tetraethylorthosilicate. J. Vac. Sci. technol. B, 1992, 10, 37-45.
    74. Sano, K.; Hayashi, Ss.; Wickramanayaka, S.; Hatanaka, Y. High Quality SiO2 Depositions from TEOS by ECR Plasma. Thin Solid Film, 1996, 397-400.
    75. Kim, M. T. Calculation of Apparent Activation Energy for the Deposition of TEOS-SiO2 Film by PECVD. Thin Solid Films, 1999, 347, 112-116.
    76. Hur’yeva, T.; Lisker, M.; Burte, E. P. Ruthenium Film Deposited by Liquid-Delivery MOCVD using Bis(ethycyclopentadienyl) Ruthenium with Toluene as the Solvent. Chem. Vap. Deposition, 1996, 12, 429-434.
    77. Kim, K. W.; Kim, N. S.; Kim, Y. S.; Choi, I.S.; Kim, H. J.; Park, J. C.; Lee, S. Y. Fabrication and Characterization of Ru Thin Films Prepared by Liquid Delivery Metal-Organic Chemical Vapor Deposition. Jpn. J. Apply. Phys, 2002, 41, 820-825.
    78. Gate, S.M.; Russell Jr, J. N.; Yates Jr, J. T. Bond activation sequence observed in the chemisorption and surface reaction of ethanol on Ni(111). Surface science, 1985, 171(1), 111-134.
    79. J. Heidberg, J.; D. Meine, D.; Redlich, B. CO2 adsorption on the MgO(100) single crystal surface detected by polarization FTIR spectroscopy and SPA-LEED. J. Electron Spectroscopy and Related Phenomena. 1993, 64-64, 599-608.
    80. A. A. El-Shafei, A. A.; Hoyer, R.; L. A. Kibler, L. A.; Kolb, D. M. Methanol Oxidation on Ru-Modified Preferentially Oriented Pt Electrodes in Acidic Medium. Journal of the electrochemical society. 2004, 151(6), F141-F145
    81. Kang, S. Y.; Choi, H. Y.; Lee, S. K.; Hwang, C. S.; Kim, H. J. Thermodynamic Calculation and Metallorganic Chemical Vapor Deposition of Ruthenium Thin Film using Bis(ethyl-π-cyclopentadienyl)Ru for Memory Application. Journal of the Electrochemical Society, 2000, 147(3), 1161-1667.
    82. Countanceau, C.; Rokotandrainibe, A. F.; Lima, A.; Garnier, E.; Pronier, S.; Le’ger, J-M. Preparation of Pt-Ru Bimetallic Anodes by Galvanostatic Pulse Electrodeposition: Characterization and Application to the Direct Methanol Fuel Cell. Journal of Applied Electrochemistry, 2004, 34, 61-66.
    83. Tsai, M. C.; Yeh, T. K.; Tsai, C. H. An Improved Electrodeposition Technique for Preparing Platinum and Platinum-Ruthenium Nanoparticles on Carbon Nanotubes directly Grown on Carbon Cloth for Methanol Oxidation. Electrochemistry Communication, 2006, 8, 1445-1452.
    84. Liu, Z.; Ling, X. Y.; Su, X.; Lee, J.Y. Carbon-Supported Pt and PtRu Nanoparticles as Catalysts for a Direct Methanol Fuel Cell. J. Phys. Chem. B, 2004, 108, 8234-8240.
    85. Mu, Y.; Liang, H.; Hu, J.; Jiang, L.; Wan, L. Controllable Pt Nanoparticle Deposition on Carbon Nanotubes as an Anode Catalyst for Direct Methanol Fuel Cell. J.Pphys. Chem. B, 2005, 109, 22212-22216.
    86. Tsai, M. C.; Yeh, T. K.; Tsai, C. H. An Improved Electrodeposition Technique for Preparing Platinum and Platinum-Ruthenium Nanoparticles on Carbon Nanotubes directly Grown on Carbon Cloth for Methanol Oxidation. Electrochemistry Communication, 2006, 8, 1445-1452.
    87. Kawaguchi, T.; Sugimoto, W.; Murakami, Y.; Takasu, Y. Particle Growth Behavior of Carbon-Supported Pt, Ru, PtRu Catalysts Prepared by an Impregnation Reductive-Pyrolysis Method for Direct Methanol Fuel Cell Anodes. Journal of Catalysis, 2005, 229, 176-184.

    QR CODE