簡易檢索 / 詳目顯示

研究生: 黃蕙琪
Wong Hui Qi
論文名稱: 於不同基材上的摻鎵氧化鋅化學氣相沉積成長晶向控制之研究
Crystallization control of Ga-doped zinc oxide films prepared by LPCVD on various substrates
指導教授: 洪儒生
Lu-Sheng Hong
口試委員: 陳良益
Liang-Yih Chen
賢鎧
Shyan-Kay Jou
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 66
中文關鍵詞: 透明導電接觸層摻鎵氧化鋅光學散射化學氣相沉積法
外文關鍵詞: transparent conductive layer, Ga-doped ZnO, light-scattering, LPCVD
相關次數: 點閱:242下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究目的在於利用化學氣相沉積以低溫製程下分別在玻璃、藍寶石、n型氮化鎵磊晶板以及p型氮化鎵磊晶板成長低電阻率且具有光學散射特性之粗糙表面摻鎵氧化鋅薄膜,以期望取代氧化銦錫作為藍光發光二極體之透明導電接觸層。

    XRD與UV量測結果顯示摻鎵氧化鋅薄膜鍍在玻璃基板上的繞射峰為(100)、(101)、(110),其中以(101)和(110)繞射峰對表面粗糙度的貢獻最大,霧度可以高達約13%。在與玻璃基板上相同的長膜條件下,摻鎵氧化鋅薄膜在c 軸指向的藍寶石基板和同為c 軸指向的n型氮化鎵磊晶基板上的成長結晶方向大都沿者六方晶c 軸方向成長,在XRD的量測並沒有觀察到(110)的結晶繞射峰。

    我們於c 軸指向的p型的氮化鎵磊晶基板上預先成長氫化非晶氧化矽和氧化銦鎢兩種非晶緩衝層,之後成長GZO膜發現可以得到與在玻璃基材上相似的(100)、(101)、(110)XRD繞射峰晶相之結果,電子顯微鏡觀測薄膜表面亦保持原本的角錐狀結構以及對藍光460奈米光波的散射作用。


    The film growth behavior of Ga-doped ZnO (GZO) prepared using low-pressure chemical vapor deposition (LPCVD) technique has been investigated. The crystal property of GZO films grown on various substrates including glass, c-plane sapphire, c-plane n-type GaN and p-type GaN was explored. Emphasis was placed upon preparing low resistivity GZO films with textured surface through crystallization control for enhancing light scattering.

    First of all, GZO films grown on glass exhibited (100), (101), (110) diffraction patterns, which contribute to film surface roughness and correspond a diffusion transmittance of 13% at light wavelength of 460 nm. Nevertheless, GZO films grown on c-plane substrates showed only c-axis aligned crystal characteristics but no pyramidal (110) diffraction peak. Then, two kinds of buffer layers, one is hydrogenated amorphous silicon oxide and the other is amorphous indium tungsten oxide, were deposited before GZO-LPCVD. The results showed that with buffer layers, GZO films grown on c-plane substrates can exhibit similar crystal property with that on glass substrate.

    摘要 i Abstract ii 致謝 iii 目錄 iv 圖索引 vi 表索引 ix 第 1章 緒論 1 1.1前言 1 1.2背景與文獻介紹 5 1.3研究的目的與方向 11 第 2章 實驗方法與步驟 13 2.1實驗藥品與氣體 13 2.1.1 三乙基鎵 (Triethylgallium,TEGa) 13 2.1.2 二乙基鋅 (Diethylzinc ,DEZn) 13 2.1.3 去離子水 (Deionized water,DI water) 13 2.1.4 氬氣(Argon,Ar ) 14 2.1.5 丙酮 (Acetone,CH3COCH3) 14 2.1.6 乙醇 (ethanol,C2H5OH) 14 2.1.7玻璃(glass) 14 2.1.8 藍寶石基板 (sapphire substrate,Al2O3) 14 2.1.9 藍寶石n型氮化鎵磊晶片 15 2.1.10 藍寶石p型氮化鎵磊晶片 15 2.2 實驗裝置與步驟 16 2.2.1 實驗設備 16 2.2.2 實驗步驟 18 2.3 分析儀器 23 2.3.1 掃描式電子顯微鏡 (Scanning Electron Microscope,SEM) 23 2.3.2 霍爾量測儀 (Hall measurement) 23 2.3.3 X光繞射儀 (X-ray Diffraction,XRD) 27 2.3.4 X射線光電子能譜化學分析儀 (X-ray photoelectron Spectrometere,XPS) 28 2.3.5 紫外光、可見光光譜儀 (UV/VIS) 29 第 3章 結果與討論 32 3.1利用低壓化學氣相沉積法(low pressure CVD,LPCVD)成長GZO 32 3.1.1 LPCVD成長GZO薄膜在玻璃基板上的製程 32 3.1.2 改變GZO薄膜摻雜濃度 40 3.2 LPCVD在藍寶石基材上的製程 47 3.3 LPCVD在藍寶石n-型氮化鎵晶片上的製程 53 3.4 LPCVD在藍寶石p-型氮化鎵晶片上的製程 59 3.4.1實驗構想 59 第 4章 總結 64 第 5章 參考文獻 65

    [1] Sze, Simon Min. Semiconductor devices: physics and technology. John Wiley & Sons, 2008.

    [2] Kuo, C. H., Feng, H. C., Kuo, C. W., Chen, C. M., Wu, L. W., & Chi, G. C. (2007). Nitride-based near-ultraviolet light emitting diodes with meshed p‐Ga N. Applied physics letters, 90(14), 142115.

    [3] Maruska, H. Á., & Tietjen, J. J. (1969). The preparation and properties of Vapor‐Deposited single‐crystal‐line GaN. Applied Physics Letters, 15(10), 327-329.

    [4] Pankove, J. I., Miller, E. A., & Berkeyheiser, J. E. (1973). Electroluminescence in GaN. In Luminescence of Crystals, Molecules, and Solutions (pp. 426-430). Springer US.

    [5] Pankove, J. I., Miller, E. A., & Berkeyheiser, J. E. (1972). GaN blue light-emitting diodes. Journal of Luminescence, 5(1), 84-86.

    [6] Amano, H., Kito, M., Hiramatsu, K., & Akasaki, I. (1989). P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI). Japanese Journal of Applied Physics, 28(12A), L2112.

    [7] Nakamura, S., Iwasa, N., & Senoh, M. (1994). U.S. Patent No. 5,306,662. Washington, DC: U.S. Patent and Trademark Office.

    [8] Nakamura, S., Senoh, M., Iwasa, N., & Nagahama, S. I. (1995). High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures. Japanese Journal of Applied Physics, 34(7A), L797.
    [9] Nakamura, S., Senoh, M., Iwasa, N., & Nagahama, S. I. (1995). High‐power InGaN single‐quantum‐well‐structure blue and violet light‐emitting diodes. Applied Physics Letters, 67(13), 1868-1870.

    [10] Nakamura, S., Senoh, M., Nagahama, S. I., Iwasa, N., Yamada, T., Matsushita, T., ... & Kiyoku, H. (1996). Room‐temperature continuous‐wave operation of InGaN multi‐quantum‐well structure laser diodes. Applied Physics Letters, 69(26), 4056-4058.

    [11] Nakamura, S., Senoh, M., Nagahama, S. I., Iwasa, N., Yamada, T., Matsushita, T., ... & Kiyoku, H. (1997). Room-temperature continuous-wave operation of InGaN multi-quantum-well structure laser diodes with a lifetime of 27 hours. Applied physics letters, 70(11), 1417-1419.

    [12] Shen, L., Heikman, S., Moran, B., Coffie, R., Zhang, N. Q., Buttari, D., ... & Mishra, U. K. (2001). AlGaN/AlN/GaN high-power microwave HEMT. IEEE Electron Device Letters, 22(10), 457-459.

    [13] Tsao, J. Y. (2004). Solid-state lighting: lamps, chips, and materials for tomorrow. IEEE Circuits and Devices Magazine, 20(3), 28-37.

    [14] Lim, J. H., Lee, K. H., & Lim, D. C. (2010). Enhanced performance in GaN light emitting diode by patterned ZnO transparent conducting oxide. Journal of the Korean Physical Society, 57(5), 1229-1232.

    [15] Fujii, T., Gao, Y., Sharma, R., Hu, E. L., DenBaars, S. P., & Nakamura, S. (2004). Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening. Applied physics letters, 84(6), 855-857.

    [16] Lee, J. H., Oh, J. T., Park, J. S., Kim, J. W., Kim, Y. C., Lee, J. W., & Cho, H. K. (2006). Improvement of luminous intensity of InGaN light emitting diodes grown on hemispherical patterned sapphire. physica status solidi (c), 3(6), 2169-2173.

    [17] Song, J. C., Lee, S. H., Lee, I. H., Seol, K. W., Kannappan, S., & Lee, C. R. (2007). Characteristics comparison between GaN epilayers grown on patterned and unpatterned sapphire substrate (0001). Journal of Crystal Growth, 308(2), 321-324.

    [18] Kang, D. H., Song, J. C., Shim, B. Y., Ko, E. A., Kim, D. W., Kannappan, S., & Lee, C. R. (2007). Characteristic comparison of GaN grown on patterned sapphire substrates following growth time. Japanese journal of applied physics, 46(4S), 2563.

    [19] Gao, H., Yan, F., Zhang, Y., Li, J., Zeng, Y., & Wang, G. (2008). Enhancement of the light output power of InGaN/GaN light-emitting diodes grown on pyramidal patterned sapphire substrates in the micro-and nanoscale. Journal of Applied Physics, 103(1), 014314.

    [20] Kim, Y. H., Ruh, H., Noh, Y. K., Kim, M. D., & Oh, J. E. (2010). Microstructural properties and dislocation evolution on a GaN grown on patterned sapphire substrate: A transmission electron microscopy study. Journal of Applied Physics, 107(6), 063501.

    [21] Tao, Y. B., Yu, T. J., Yang, Z. Y., Ling, D., Wang, Y., Chen, Z. Z., ... & Zhang, G. Y. (2011). Evolution and control of dislocations in GaN grown on cone-patterned sapphire substrate by Metal Organic Vapor PhaseEpitaxy. Journal of Crystal Growth, 315(1), 183-187.

    [22] Margalith, T., Buchinsky, O., Cohen, D. A., Abare, A. C., Hansen, M., DenBaars, S. P., & Coldren, L. A. (1999). Indium tin oxide contacts to gallium nitride optoelectronic devices. Applied Physics Letters, 74(26), 3930-3932.

    [23] Lin, Y. C., Chang, S. J., Su, Y. K., Tsai, T. Y., Chang, C. S., Shei, S. C., ... & Chen, S. C. (2003). InGaN/GaN light emitting diodes with Ni/Au, Ni/ITO and ITO p-type contacts. Solid-State Electronics, 47(5), 849-853.

    [24] Lee, C. L., & Lee, W. I. (2007). Effects of strained InGaN interlayer on contact resistance between p-Ga N and indium tin oxide. Applied physics letters, 90(18), 181125.

    [25] Chae, S. W., Kim, K. C., Kim, D. H., Kim, T. G., Yoon, S. K., Oh, B. W., ... & Sung, Y. M. (2007). Highly transparent and low-resistant ZnNi/indium tin oxide Ohmic contact on p-type GaN. Applied physics letters, 90(18), 181101.

    [26] Jang, J. S., & Seong, T. Y. (2007). Low-resistance and thermally stable indium tin oxide Ohmic contacts on strained p‐In 0.15 Ga 0.85 N∕ p‐Ga N layer. Journal of applied physics, 101(1), 013711.

    [27] Horng, R. H., Wuu, D. S., Lien, Y. C., & Lan, W. H. (2001). Low-resistance and high-transparency Ni/indium tin oxide ohmic contacts to p-type GaN. Applied Physics Letters, 79(18), 2925-2927.

    [28] Jung, S. P., Ullery, D., Lin, C. H., Lee, H. P., Lim, J. H., Hwang, D. K., ... & Park, S. J. (2005). High-performance GaN-based light-emitting diode using high-transparency Ni∕ Au∕ Al-doped ZnO composite contacts. Applied Physics Letters, 87(18), 181107.

    [29] Horng, R. H., Shen, K. C., Yin, C. Y., Huang, C. Y., & Wuu, D. S. (2013). High performance of Ga-doped ZnO transparent conductive layers using MOCVD for GaN LED applications. Optics express, 21(12), 14452-14457.

    [30] Faÿ, S., Kroll, U., Bucher, C., Vallat-Sauvain, E., & Shah, A. (2005). Low pressure chemical vapour deposition of ZnO layers for thin-film solar cells: temperature-induced morphological changes. Solar Energy Materials and Solar Cells, 86(3), 385-397.
    [31] Nam, N. G. (2013). Development of ZnO: Ga Transparent Conducting Oxide Thin Films through Metalorganic Chemical Vapor Deposition using various Zn and Ga Source Materials. National Taiwan University of Science and Technology Department of Chemical Engineering PhD Dissertation.

    [32] Wu, J. W. (2015). Process design of CVD of gallium-doped zinc oxide films with light-scattering surface structure.

    [33] Wang, B. W. (2016). Annealing treatment on Ga-doped zinc oxide films prepared by LPCVD method at temperature lower than 200℃.

    [34] 施敏, 半導體製程概論, 國立交通大學出版社,新竹市 2002.

    [35] Wang, M., Jiang, L., Wang, Y., Kim, E. J., & Hahn, S. H. (2015). Growth Mechanism of Preferred Crystallite Orientation in Transparent Conducting ZnO: In Thin Films. Journal of the American Ceramic Society, 98(10), 3022-3028.

    QR CODE