簡易檢索 / 詳目顯示

研究生: 葉嘉哲
Jia-jhe Ye
論文名稱: 高速雙向無線光通訊參數設計與改良
Parameters Design And improvement For Bidirectional High-Speed Optical Wireless Transmission
指導教授: 廖顯奎
Shien-Kuei Liaw 
口試委員: 葉秉慧
Pinghui-Sophia Yeh
鄭超仁
Chau-Jern Cheng
何文章
Wen-Jeng Ho
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 84
中文關鍵詞: 自由空間光學無線光通訊傳輸通道雙向傳輸分波多工
外文關鍵詞: free-space optical (FSO), optical wireless communication, transmission channel, bidirectional transmission, wavelength division multiplexing (WDM)
相關次數: 點閱:474下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在提升無線光通訊傳輸之距離與品質以及傳輸通道之干擾測試,且將本論文架構應用在分波多工雙向傳輸之上,每一波道傳輸速度達到10 G bit/s以上。本論文中,利用傳輸距離5公尺為一測量基準,進行許多重要參數之量測,並量測傳輸距離25公尺之誤碼率;傳輸距離5公尺與25公尺之系統損耗為2.5 dB與9.9 dB,作圖觀測後得傳輸距離與系統損耗呈線性關係。在本論文第四章中進行傳輸距離5公尺與25公尺之誤碼率量測,5公尺(單一波長)單向與雙向傳輸之功率償付值分別為0.12 dB與0.25 dB;25公尺(單一波長)單向與雙向傳輸之功率償付值分別為0.49 dB與0.67 dB;25公尺(分波多工)單向與雙向傳輸之功率償付值分別為0.58 dB與0.75 dB,功率償付值皆在1 dB以內。在本論文第五章中進行無線光通訊傳輸通道測試之量測,在系統傳輸時於傳輸通道間加入玻璃、空氣擾動、雨滴干擾等不同的干擾參數,傳輸通道受干擾其接收功率受到衰減;而穿透玻璃後功率衰減之變化從0.63 dB至4.14 dB不等,但經誤碼率量測後得功率償付值皆在0.3 dB以內;空氣擾動則利用蠟燭燃燒之上升熱空氣以製造空氣擾動,接收功率受衰減從0.1 dB至5.8 dB不等;雨滴干擾,利用自行搭建之裝置製造出下雨的情況,接收功率受影響之功率不足0.3 dB。本論文之實驗架構可靈活的安裝於許多位置提供網路的連結,可供架設在大樓之間傳遞訊息,並可減少光纖的鋪設與設置成本。


    This work aims at enhance the transmission distance and quality of free-space optical transmission. The adjacent channels interference testing was also evaluated. Then the proposed scheme was applied in wavelength division multiplexing bidirectional point to point system. The data rate per channel is 10 Gbit/s in pseudo-random binary sequence (PRBS) 2-31 format. In this thesis, the transmission distances were 5m for important parameters measurement, and 25 m for bit error rate performance measurement. The system power losses are 2.5 and 9.9 dB, respectively.
    We obtained a linear curve for transmission distance versus system power loss. It is because the bean pattern was still smaller than the photo detector area in distance up to 25 m if the beam has been focused by a convex lens. The measured power penalties for 5 m and 25 m unidirectional transmission are 0.12 and 0.49 dB, respectively, as compared to the back-to-back transmission. The bit error rate (BER) performances for unidirectional and bidirectional transmissions have negligible difference. When adjacent channel interference is considered, the measured power penalties for 25 m unidirectional and bidirectional transmission were increased to 0.58 dB and 0.75 dB, respectively. Nevertheless, all the power values are still under system criterion of 1dB.
    In Chapter 5, some possible parameters such as window glass, atmospheric turbulence and raindrops were considered, individually, in 5 m free space transmission. The measured power loss for window glass under different align angles ranges from 0.63 to 4.14 dB; corresponding to BER values of less than 0.3 dB. The power loss for atmospheric turbulence ranges from 0.1 to 5.8 dB when candles were used to fit the temperature gradient. And the artificial raindrops induced 0.3 dB power loss during experiment. The measured results are helpful for real case application for building to building, short-haul optical wireless communication.

    摘要 I Abstract II 目錄 III 圖表索引 V 第一章 緒論 1 1.1 前言 1 1.2 研究動機與方法 2 1.3 論文架構 3 第二章 無線光通訊原理 4 2.1無線光通訊介紹 4 2.2發射端 5 2.3傳輸通道 7 2.4接收端 9 2.5光源與安全規範 12 2.5.1高斯光束 13 2.6 誤碼率 14 第三章 無線光通訊之傳輸架構 16 3.1實驗架構 16 3.1.1 光學對準 17 3.1.2多軸可調架構 20 3.2實驗架構說明 23 3.2.1對光系統與損耗 24 3.2.2 傳輸波段(C-band)於空氣中之衰減 27 第四章 無線光通訊之傳輸實驗 29 4.1 五公尺(單一波長)單雙向傳輸 29 4.1.1 五公尺(單一波長)雙向傳輸 32 4.2 二十五公尺(單一波長)單雙向傳輸 34 4.2.1 二十五公尺(單一波長)雙向傳輸 38 4.3 二十五公尺分波多工單雙向傳輸 39 4.3.1 二十五公尺分波多工雙向傳輸 42 4.3.2 二十五公尺傳輸誤碼率 44 4.4 二十公尺傳輸迴路測試 44 4.5傳輸距離量測結果 48 第五章 傳輸通道干擾參數量測 50 5.1 穿透玻璃實驗 50 5.1.1 穿透玻璃功率量測 53 5.1.2 穿透玻璃誤碼率量測 61 5.2 空氣擾動實驗 64 5.3雨滴模擬實驗 72 第六章 結論與未來展望 76 6.1 結論 76 6.2 未來展望 77 參考文獻 80

    [1] 廖顯奎譯,“光纖通訊 ”,高立圖書有限公司,2005。
    [2] 黃俊淵,“無線光通訊傳輸系統設計與通道干擾研究”,國立臺灣科技大學碩士論文,2012。
    [3] G. Nykolak, P. F. Szajowski, A. Cashion, H. M. Presby, G. E. Tourgee, and J. J. Auborn, “A 40 Gb/s DWDM free space optical transmission link over 4.4 km,” Proc. SPIE, vol. 3932, pp. 16-20, 2000.
    [4] P. F. Szajowski, G. Nykolak, J. J. Auborn, H. M. Presby, G. E. Tourgee, E.J. Korevaar, J. J. Schuster, and I. I. Kim, “2.4 km free-space optical communication 1550 nm transmission link operating at 2.5 Gb/s experimental results,” Proc. SPIE, vol.3532, pp. 29–40, 1999.
    [5] F. Marioni, Z. Sodnik, and F. E. Zocchi, “2.5-Gb/s free-space optics link over 1.1 km with direct fiber coupling to commercial devices,” Proc. SPIE, vol. 5550, pp. 60–69, 2004.
    [6] G. Nykolak, P. F. Szajowski, and J. Jacques, “4 × 2.5Gb/s 4.4 km WDM free-space optical link at 1550 nm,” Proc.OFC, pp. PD11/1-PD11/3, 1999.
    [7] P. L. Chen, S. T. Chang, S. T. Ji, and S. C. Lin, “Demonstration of 16 channels 10 Gb/s WDM free space transmission over 2.16 km,” IEEE/LEOS Summer Topical Meetings, pp. 235-236, 2008, Taipei, Taiwan.
    [8] D. Kedar and S. Arnon, “Urban optical wireless communication networks: the main challenges and possible solutions,” IEEE Communications Magazine, vol. 42, pp. S2-S7, 2004.
    [9] D. J. T. Heatley, D. R. Wisely, I. Neild, and P. Cochrane, “Optical wireless: The story so far,” IEEE Communications Magazine, vol. 36, pp. 72-74, 79-82, 1998.
    [10] 呂宛蒨,“160 Gbit/s 雙向分波多工之無線光通訊設計與系統傳輸”,國立臺灣科技大學碩士論文,2011。
    [11] K. Yoshida, K. Tanaka, T. Tsujimura, and Y. Azuma, “Assisted focus adjustment for free space optics system coupling single-mode optical fibers,” IEEE Transactions on Industrial Electronics, vol. 60, no. 11, pp. 5306-5314, 2013.
    [12] K. Wakamori, K. Kazaura, and I. Oka, “Experiment on regional broadband network using free-space-optical communication systems,” Journal of Lightwave Technology, vol. 25, no. 11, pp. 3265-3273, 2007.
    [13] D. Zhou, P. G. LoPresti, and H. H. Refai, “Elargement of beam coverage in FSO mbile ntwork,” Journal of Lightwave Technology, vol. 29, no. 10, pp. 1583-1589, 2011.
    [14] A. A. Farid and S. Hranilovic, “Outage capacity optimization for free-space optical links with pointing errors,” Journal of Lightwave Technology, vol. 25, no. 7, pp. 1702-1710, 2007.
    [15] I. I. Kim, B. McArthur, and E. Korevaar, ”Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications”, Pro. SPIE, vol. 4214, pp. 26-37, 2001.
    [16] 曹培熙,”雷射安全措施”,國立臺灣大學物理所碩士論文,2002。
    [17] W. O. Popoola, and Z. Ghassemlooy, “BPSK subcarrier intensity modulated free-space optical communications in atmospheric turbulence,” Journal of Lightwave Technology, vol. 27, pp. 967-973, 2009.
    [18] R. M. Gagliardi and S. Karp, “Optical communications, ” 2nd Edition, John Wiley, New York, 1995.
    [19] H. Moradi, H. H. Refai, and P. G. LoPresti, “Spatial diversity for fiber-bundled FSO nodes with limited mobility,” Journal of Lightwave Technology, vol. 30, no. 1, pp. 175-183, 2012.
    [20] H. Moradi, H. H. Refai, and P. G. LoPresti, “Circular MIMO FSO nodes with transmit selection and receive generalized selection diversity,” IEEE Transactions on Vehicular Technology, vol. 61, no. 3, pp. 1174-1181, 2012.
    [21] S. O. Kasap, “Optoelectronics and photonics: principles and practices,” Pearson Education International, pp. 1-13, 2001.
    [22] R. Ramaswami and K. N. Sivarajan, ”Optical network,” Morgan Kaufmann, USA, pp. 258-263, 2002.
    [23] A. M. Zin, S. M. Idrus, and N. Zulkifli, “The characterization of radio-over-fiber employed GPON architecture for wireless distribution network,” International Journal of Machine Learning and Computing, vol. 1, no. 5, pp. 522-527, 2011.
    [24] J. M. Senior, “Optical fiber communications: principle and practice”, 3rd Edition, Prentice Hall, UK, ISBN 9780130326812, 2009.
    [25] 耿繼業、何建娃,”幾何光學”,全華科技圖書股份有限公司,2009。
    [26] 王祥,”線性型單縱模光纖雷射的研製”,國立臺灣科技大學碩士論文,2010。
    [27] 許凱翔,”C頻帶波長可調線性型單縱模光纖雷射之研製”,國立臺灣科技大學碩士論文,2010。
    [28] 李揚漢、許立根、譚昌文、洪鴻文、曹士林、楊淳良、趙亮琳,“光纖通訊網路”,五南圖書出版股份有限公司,2007。
    [29] S. V. Kartalopoulos, “Introduction to DWDM technology,” Wiley-IEEE, New York, 2000.
    [30] A. Vavoulas, H. G. Sandalidis, and D. Varoutas, “Weather effects on FSO network connectivity,” Journal of Optical Communications and Networking, vol. 4, no. 10, pp.734-740, 2012.
    [31] J. Perez, Z. Ghassemlooy, S. Rajbhandari, M. Ijaz, and H. L. Minh, “Ethernet FSO communications link performance study under a controlled fog environment,” IEEE Communications Letters, vol. 16, no. 3, pp.408-410, 2012.
    [32] H. Le-Minh, Z. Ghassemlooy, M. Ijaz, S. Rajbhandari, O. Adebanjo, S. Ansari, and E. Leitgeb, “Experimental study of bit error rate of free space optics communications in laboratory controlled turbulence,” IEEE Globecom Workshop on Optical Wireless Communications, pp. 1072-1076, 2010.
    [33] Z. Xiaoming and J. M. Kahn, “Free space optical communication through atmospheric turbulence channels,” IEEE Transactions on Communications, vol. 50, pp. 1293-1300, 2002.
    [34] W. O. Popoola and Z. Ghassemlooy, “BPSK subcarrier intensity modulated free space optical communications in atmospheric turbulence,” Journal of Lightwave Technology, vol. 27, pp. 967-973, 2009.
    [35] T. A. Tsiftsis, H. G. Sandalidis, G. K. Karagiannidis, and M. Uysal, “Optical wireless links with spatial diversity over strong atmospheric turbulence channels,” IEEE Transactions on Wireless Communications, vol. 8, pp. 951-957, 2009.
    [36] H. G. Sandalidis, T. A. Tsiftsis, G. K. Karagiannidis, and M. Uysal, “BER performance of FSO links over strong atmospheric turbulence channels with pointing errors,” IEEE Communications Letters, vol. 12, no. 1, pp. 44-46, 2008.
    [37] J. B. Wang, M. Sheng, X. Song, Y. Jioa, and M. Chen, “Comments on BER performance of FSO links over strong atmospheric turbulence channels with pointing errors,” IEEE Communications Letters, vol. 16, no. 1, pp. 22-23, 2012.
    [38] I. B. Djordjevic, J. A. Anguita, and B. Vasic, “Error-correction coded orbital-angular-momentum modulation for FSO channels affected by turbulence,” Journal of Lightwave Technology, vol. 30, no. 17, pp. 2846-2852, 2012.
    [39] N. D. Chatzidiamantis, H. G. Sandalidis, G. K. Karagiannidis, and Michail Matthaiou, “Inverse gaussian modeling of turbulence-induced fading in free-space optical systems,” Journal of Lightwave Technology, vol. 29, no. 10, pp. 1590-1596, 2011.
    [40] A. Z. Suriza, A. K. Wajdi, and A. W. Naji, “Preliminary analysis on the effect of rain attenuation on free space optics (FSO) propagation measured in tropical weather condition,” IEEE International Conference on Space Science and Communication (IconSpace), pp. 96-101, Malaysia, 2011.

    QR CODE