簡易檢索 / 詳目顯示

研究生: 陳嘉俊
Chia-Chun Chen
論文名稱: 藍光雷射水下光通訊系統設計與品質量測
System Design and Performance Measurement of the Blue-light Based Underwater Communications
指導教授: 廖顯奎
Shien-Kuei Liaw
口試委員: 宋峻宇
Jiun-Yu Sung
鄒志偉
Chi-Wai Chow
陳彥宏
Yen-Hung Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 92
中文關鍵詞: 水下無線光通訊可見光通訊雷射對準海水
外文關鍵詞: Underwater wireless optical communication, Visible optical communication, Laser, Alignment, Saltwater
相關次數: 點閱:203下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主旨為建構水下無線光通訊傳輸系統,利用在水裡傳輸損耗較小的450 nm藍光雷射當作光源,並使用長度為1.5公尺的水缸裝滿自來水將雷射光從水缸外側打入水缸,且架設反射面鏡使訊號光在水缸中來回反射,在有限距離內增長訊號光在水中傳輸的距離。經過本實驗架構傳輸損耗量測,光源進入水缸的入射角越大,所帶來的損耗也就越大,當入射角為30度時穿透傳輸損耗將大於1 dB,在1.5公尺的傳輸部分,經過實驗傳輸架構大約產生1.6 dB的損耗,在3公尺傳輸的部分產生4.4 dB的損耗,在6公尺傳輸的部分產生8.5 dB的損耗,在誤碼率方面,1.5公尺、3公尺與6公尺,功率償付值的差異大約為4 dB。而在傳輸通道干擾的實驗中,當傳輸通道為清澈時水流擾動對訊號接收幾乎不影響,接著水溫變化擾動實驗,以每5度為一間隔將水溫升高至攝氏50度與降低至攝氏10度,在升高水溫至40度時開始會對訊號接收產生影響,而在低水溫10度時對訊號光的接收效率影響不大,由於溫度越高熱對流明顯改變水的折射率,溫度分布不均導致訊號光傳輸路徑飄浮不定影響傳輸效率,接著是海水模擬傳輸實驗,在水中加入海水素模擬訊號光在海水中傳輸,結果顯示在海水中有許多細小微粒影響傳輸效率,其傳輸損耗為每公尺4 dB,接著分別將海水沉澱數小時與將沉水馬達開啟模擬水流擾動後量測誤碼率,發現較為混濁的海水進行水流擾動模擬時其影響傳輸效率明顯,其約有1dB的功率償付值,最後在以上的結果可以看出在通道間干擾時影響訊號光傳輸會是最大的,故實際應用時如何避免傳輸通道干擾會是無線傳輸的重要議題 。


    The subject of this thesis is mainly to construct underwater wireless optical communication system. With the characteristics of low transmission loss in the water, the 450 nm blue-light laser is selected as the light source. Using the aquarium with the total length of 1.5 meter and filled with running water, we input the laser light from the lateral side of the aquarium, mount the reflective mirrors aside to make the incident light transmit back and forth in the aquarium and increase the transmission distance of the incident light in the water. According to the result of the transmission loss experiments, the bigger the incident angle of light into the aquarium is, the more the loss is. As the incident angle is 30 degrees, the transmission loss is more than 1 dB. There will be 1.6 dB, 4.4 dB, 8.5 dB corresponding to the transmission distance of 1.5 meter, 3 meters, 6 meters, respectively. Regarding the BER (Bit Error Ratio), the difference of power penalty is roughly 4 dB for the chosen transmission distances. In the experiment of the interruption to transmission routes, when the water is crystal clear, the perturbation resulted from water flow barely affect the signal reception. As for the experiment of the change of temperature in the water, we increase and decrease the temperature every 5 Celsius degrees between 10 and 50 Celsius. When the temperature is up to 40 degrees, it will affect the signal reception. But for the temperature down to 10 degrees, it has no clear impact on the efficiency of light reception. That is because as the temperature increases, the heat convection clearly changes the refractive index of the water and the uneven temperature distribution leads to the unstable route for light transmission. About the experiment of the simulation of transmission in the saltwater, we add the saltwater material to simulate the light transmission in the saltwater. The result shows that there are a variety of tiny particles that affect transmission efficiency and its transmission loss is 4 dB/m. With the precipitation of saltwater for hours and turning on the pump motor to simulate the perturbation of water flow to measure the BER, we find out that the phenomenon that the perturbation caused by water flow influences transmission efficiency in turbid saltwater is obvious, with 1 dB power penalty. Finally, from the above results, we can realize that the interruption in the route has the biggest impact on the light transmission. As a result, knowing how to avoid the interruption to the transmission routes is the important issue to wireless transmission in the real-world applications.

    摘要 I Abstract II 目錄 IV 圖目錄 VII 表目錄 X 第一章 緒論 1 1.1前言 1 1.2研究動機與目的 2 1.3論文架構 3 第二章 水下無線光通訊技術原理與特性 4 2.1水下無線通訊概念 4 2.2發射端 7 2.2.1光源LED與LD比較 7 2.2.2雷射發光原理 7 2.2.3 T型偏壓器 10 2.3傳輸通道 11 2.4調變 13 2.4.1調變器類型 13 2.4.2強度調變 14 2.4.3開關鍵控與脈波振幅調變 14 2.5接收端 15 2.5.1菲涅耳透鏡 16 2.5.2光檢測器 17 2.6文獻探討 20 第三章 實驗系統基本特性量測 23 3.1 實驗設備與系統連結 23 3.1.1實驗設備 23 3.1.2實驗系統連結 26 3.2 雷射光源優化 28 3.2.1雷射 28 3.2.2散熱器 29 3.2.3雷射散熱優化結果 30 3.3光學對準 32 3.3.1光源對準 32 3.3.2對光系統與損耗 33 3.4 玻璃穿透損耗 35 3.4.1光源入射玻璃角度影響 35 3.4.2長距離傳輸後玻璃損耗比較 36 3.4.3反射面鏡放置於水缸內與外功率衰減比較 38 第四章 水下無線光通訊系統實作與結果討論 41 4.1眼圖與誤碼率分析 41 4.2 1.5公尺水下光通訊系統 43 4.3 6公尺水下光通訊系統 49 4.4 水下無線光通訊傳輸的功率計算 52 4.4.1水下無線光通訊系統的功率損耗計算 52 4.4.2水下無線光通訊系統理想傳輸距離計算 53 4.5 水下無線光通訊傳輸實驗模擬 55 第五章 水下無線光通訊傳輸通道干擾量測 57 5.1流水擾動 57 5.2溫度擾動 60 5.2.1 高溫 61 5.2.2低溫 66 5.3海水模擬 69 第六章 結論與未來展望 72 6.1 結論 72 6.2 未來展望 73 參考文獻 75

    參考文獻
    [1] Hranilovic, Wireless Optical Communication Systems, Springer, New York, 2004.
    [2] Deva K Borah, “A review of communication-oriented optical wireless systems,” EURASIP Journal on Wireless Communications and Networking, 2012.
    [3] S. Q. Duntley, “Light in the sea∗,” J. Opt. Soc. Am., vol. 53, no. 2, pp.214–233, Feb. 1963.
    [4] G. D. Gilbert, T. R. Stoner, and J. L. Jernigan, “Underwater experiments on the polarization, coherence, and scattering properties of a pulsed blue-green laser,” Proc. SPIE, vol. 0007, pp. 07 – 14, Jun. 1966.
    [5] M. A. Khalighi and M. Uysal, ‘‘Survey on free space optical communication: A communication theory perspective,’’ IEEE Commun. Surveys Tuts., vol. 16, no. 4, pp. 2231–2258, Nov. 2014.
    [6] Z. Ghassemlooy and W. O. Popoola, Terrestrial Free-Space Optical Communications. Rijeka, Croatia: InTech, ch. 17,pp. 356–392, 2010.
    [7] X. Zhu and J. M. Kahn, ‘‘Free-space optical communication through atmospheric turbulence channels,’’ IEEE Trans. Commun., vol. 50, no. 8, pp. 1293–1300, Aug. 2002.
    [8] R. M. Dunbar, H. Klevebrant, J. Lexanger, S. Svensson, and A. W. Tennat, ‘‘Autonomous underwater vehicle communications,’’in Proc. ROV, Vancouver, BC, Canada, pp. 270–278, 1990.
    [9] S. Q. Duntley, “Light in the sea∗,” J. Opt. Soc. Am., vol. 53, no. 2, pp.214–233, Feb. 1963.
    [10] G. D. Gilbert, T. R. Stoner, and J. L. Jernigan, “Underwater experiments on the polarization, coherence, and scattering properties of a pulsed blue-green laser,” Proc. SPIE, vol. 0007, pp. 07 – 14, Jun. 1966.
    [11] Z. Ghassemlooy and W. O. Popoola, and S. Rajbhandrai. Optical Wireless Communications: System and Channel Moderlling with MATLAB® second edition, New York: CRC Press, 2019.
    [12] S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd ed. John Wiley & Sons Inc., 2007
    [13] J. M. Senior, Optical Fiber Communications Principles and Practice, 3rd ed. Essex: Pearson EducationLimited, 2009.
    [14] J. Hecht, Understanding Fiber Optics, 5th ed. Prentice Hall, 2005
    [15] K.-D. Langer and J. Grubor, “Recent developments in optical wireless communications using Infrared and visible light,” in Proc. ICTON, pp.146-151, 2007.
    [16] “Broadband Coaxial Bias Tees,” 1st ed., Picosecond Pulse Labs, Boulder, CA,2000.
    [17] J. R. V. Zaneveld, “Light and water: Radiative transfer in natural waters,” 1995.
    [18] R. W. Spinrad, K. L. Carder, and M. J. Perry, Ocean optics. Oxford University Press, vol. 25, 1994.
    [19] C. Mobley, Light and Water: Radiative Transfer in Natural Waters. Academic Press, 1994.
    [20] U. Gliese, T. N. Nielsen, S. Norskov, and K. E. Stubkjaer, “Multifunctional Fiber-Optic Microwave Links Based on Remote Heterodyne Detection,” IEEE Trans. Microw. Theory Tech., vol. 46, no. 5, pp. 458–468, 1998.
    [21] K. Kikuchi, “Coherent Optical Communications: Historical Perspectives and Future Directions,” in High Spectral Density Optical Communication Technologies, Berlin, Heidelberg: Springer BerlinHeidelberg, pp. 11–49, 2010.
    [22] A. Lender, "Correlative Digital Communication Techniques," in IEEE Transactions on Communication Technology, vol. 12, no. 4, pp. 128-135, December 1964.
    [23] K. Szczerba, M. Karlsson, and P. Andrekson,”35.2 Gbps 8-PAM transmission over 100 m of MMF using an 850 nm VCSEL,” in Proc. ECOC, pp. 1-3,2013
    [24] Shiyu Zhang, "3D printed dielectric Fresnel lens," 2016 10th European Conference on Antennas and Propagation (EuCAP), Davos, 2016
    [25] M. Kusko, A. Avram and D. Apostol, "Design and fabrication of Fresnel lenses," 2008 International Semiconductor Conference, Sinaia, 2008,
    [26] W. van. Etten and J. van der. Plaats, Fundamentals of Optical Fiber Communications. Prentice Hall,1991.
    [27] S. F. Tedde, “Fabrication and Characterization of Organic Photodiodes for Industrial and Medical Applications,” Walter Schottky Institut, Technische Universität München, 2009
    [28] C. C. Davis, Lasers and Electro-Optics: Fundamentals and Engineering, 2nd ed. Cambridge University Press, 2014.
    [29] R. M. Gagliardi and S. Karp, Optical Communications, 2nd ed. New York: John Wiley, 1995.
    [30] K. Shiba et al., “High Sensitivity Asymmetric Waveguide APD with over -30 dBm at 10 Gbit/s,” in ECOC 2004,
    [31] Z. Ghassemlooy, W. Popoola, and S. Rajbhandra, Optical Wireless communications: System and Channel Modelling with MatLAB, New York; CRC Press, 2012
    [32] Y. Li, H. Yin, X. Ji and B. Wu, "Design And Implementation Of Underwater Wireless Optical Communication System With High-Speed And Full-Duplex Using Blue/Green Light," 2018 10th International Conference on Communication Software and Networks (ICCSN), Chengdu, 2018,
    [33] H. M. Oubei, J. R. Duran, B. Janjua, H. Y. Wang, C. T. Tsai, Y. C. Chi, T. K. Ng, H. C. Kuo, J. H. He, M. S.Alouini, G. R. Lin, and B. S. Ooi, “4.8 Gbit/s 16-QAM-OFDM transmission based on compact 450-nm laser for underwater wireless optical communication,” Opt. Express 23, 2015.
    [34] X. Liu, S. Yi, R. Liu, L. Zheng and P. Tian, "34.5 m Underwater optical wireless communication with 2.70 Gbps data rate based on a green laser with NRZ-OOK modulation," 2017 14th China International Forum on Solid State Lighting: International Forum on Wide Bandgap Semiconductors China (SSLChina: IFWS), Beijing, 2017: 10.1109/IFWS.2017.8245975.
    [35] WOKEN Technology,” Bias tee,” 0230A05010301L data sheet, Jan. 2020
    [36] APD210 High Sensitivity Avalanche Photodetector data sheet, Menlo Systems., 2020
    [37] A.11 Thermoelectric effect" Eng.FSU.edu.2002-02-01
    Available: http://www.eng.fsu.edu/~dommelen/quantum/style_a/nt_pelt.html
    [38] eCooling , “TEC熱電製冷器在電子產品熱設計中的應用” ,2017
    [39] AH Speed , “Understanding Data Eye Diagram Methodology for Analyzing High Speed Digital Signals, ’’2015.
    [40] Electronicsnotes , ” What is Bit Error Rate: BER tutorial” ,2018
    [41] T. Scholz, "Laser based underwater communication experiments in the Baltic Sea," 2018 Fourth Underwater Communications and Networking Conference (UComms), Lerici, 2018
    [42] Wikipedia, “Sea surface temperature”,2020

    無法下載圖示 全文公開日期 2025/08/11 (校內網路)
    全文公開日期 2028/08/11 (校外網路)
    全文公開日期 2028/08/11 (國家圖書館:臺灣博碩士論文系統)
    QR CODE