簡易檢索 / 詳目顯示

研究生: 黃彥馨
Yan-Sin Huang
論文名稱: 運用硫醇-烯反應引入自修復性能於聚異戊二烯橡膠
Introduction of Self-healing Properties to Polyisoprene Rubber via Thiol-ene Reaction
指導教授: 邱昱誠
Yu-Cheng Chiu
口試委員: 邱昱誠
李文亞
陳燿騰
蔡榮訓
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 111
語文別: 中文
論文頁數: 83
中文關鍵詞: 聚異戊二烯可拉伸自修復高分子改質
外文關鍵詞: polyisoprene, stretchable, self-healing, polymer modification
相關次數: 點閱:204下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

聚異戊二烯 (Polyisoprene, PI) 為天然橡膠的主要成分,是一種重要的彈性體材料,具有良好的抗疲勞性、生物相容性和經濟效益。為了防止材料在長時間使用後磨損或裂紋所造成之安全問題,在過去幾年中,許多研究致力於新型軟材料的自愈化學。針對目前自修復天然橡膠的論文中,離子鍵的引入是實現橡膠自愈行為的常用方法之一。然而,這些研究往往需要較為複雜的改性方法或者改質過程中含有金屬離子。因此,在本文中,我們展示了一種簡單且環保的合成方法,可通過一步驟反應合成自修復橡膠。藉由 L-半胱氨酸 (L-cysteine, LC) 結構中之胺基與羧基,透過-NH2基團、C=O基團與-OH基團產生氫鍵作用力,以達到自修復目的。此外,LC可由動物的毛髮或蹄進一步提取而得,為環境友善之原物料。LC單體藉由小的空間立體與PI形成強氫鍵相互作用力,並達到動態交聯,並藉由PI固有的可拉伸性,形成彈性體。在此我們藉由LC之-SH基團與PI之雙鍵結構 進行硫醇-烯反應,通過不同 LC 重量與聚合物中雙鍵數量的比率,從而合成了 PI-LC-X(X = 10、30 和 50),並研究其聚合物結構、熱性能和機械性能,同時探討氫鍵對於該材料之熱物性質影響。其中PI-LC-30具有較強之應力以及好的聚合物鏈流動性,有助於材料在室溫下之自修復行為。


Polyisoprene (PI), a primary ingredient of natural rubber, is a critical class of elastomer materials with good fatigue resistance, biocompatibility, and economic benefits. However, to prevent the material from wearing out or cracking after a long time of use, a tremendous effort has been made to self-healing chemistry in the last few years for novel soft materials. In the current papers on self-healing natural rubber, the introduction of ionic bonds is one of the common methods to achieve the self-healing behavior of rubber. However, there are usually difficult modification methodologies or containing metal ions. In this study, we demonstrate a simple and eco-friendly synthetic method to synthesize self-healing rubber through a one-step reaction. Through the amine group and carboxyl group in the L-cysteine (LC) structure, the hydrogen bonding force is generated by the -NH2 group, C=O group and -OH group to achieve self-healing. In addition, LC can be further extracted from animal hair or hooves and is an environmentally friendly raw material. The LC monomer forms a strong hydrogen bond interaction force with PI through a small three-dimensional structure, realizes dynamic cross-linking, and forms an elastomer through the inherent stretchability of PI. In this study, we conduct a thiol-ene reaction through the -SH group of LC and the double bond structure of PI, through the ratio of different LC weights to the number of double bonds in the polymer, PI-LC-X (X = 10, 30, and 50), were thus synthesized. We investigate the structural, thermal, and mechanical properties of the PI-LC, and discuss the effect of hydrogen bonding on material properties. In particular, PI-LC-30 film has strong stress and retains the fluidity of the polymer chain, which helps the material to self-healing at room temperature.

中文摘要 I Abstract II Table Captions V Figure Captions VI Chapter 1 Introduction 10 Chapter 2 Basic Theory and Literature Review 15 2.1 Properties and Applications of Polyisoprene 15 2.1.1 Elastic properties 15 2.1.2 Applications of Polyisoprene 15 2.1.3 Application of isoprene oligomers 17 2.2 Self-healing behavior 19 2.2.1 Overview of Self-Healing chemisty 20 2.2.2 Example of Self-healing Polyisoprene 22 2.2.2.1 Self-healing using disulfide/polysulfide bonds 22 2.2.2.2 Self-healing by epoxy natural rubber blended ionomer 24 2.2.2.3 Self-healing behavior by hydrogen bonding or ionic bonding 24 2.2.2.4 Self-healing behavior by hydrogen bonding 27 2.3 Thiol-ene Reaction 28 2.4 Hydrogen bonding option 30 2.4.1 Introduction of hydrogen bonding in supramolecular chemistry 31 2.4.2 Self-healing moiety selection 32 Chapter 3 Experimental Section 35 3.1 Experimental Materials 35 3.2 Instrument 36 3.3 Experimental Method 36 3.3.1 Synthesis Flow Chart of PI-LC elastomer 36 3.3.2 Synthesis of the PI-LC 37 3.3.3 Preparation of PF-LC thin films 37 3.4 Analyze Experimental Methods 38 3.4.1 Structural Identification 38 3.4.2 Material Analysis 38 3.4.3 Self-Healing Property Analysis 39 3.4.4 Rheological Measurements 39 Chapter 4 Results and Discussion 40 4.1 Synthesis and Identification of PI-LC 40 4.2 Material Mechanical Property and Rheology Analysis 45 4.3 Thermal Properties Analysis and hydrogen bond characteristics 47 4.4 Self-healing Studies and Analysis of Self-Healing Surface Morphology 55 4.5 Material Tear-resistant Test and Cyclic tensile tests 59 Chapter 5 Conclusion 63 Chapter 6 Future Work 64 6.1 Synthesis Strategy 64 6.1.1 Synthesis of sugar-based thiols 64 6.1.2 Synthesis and material characterization of sugar-based polyisoprene 66 Chapter 7 Reference 67

1. Scott, G., Polymers and the Environment. Royal Society of Chemistry: 1999.
2. Mars, W.; Fatemi, A. J. R. c.; technology, Factors that affect the fatigue life of rubber: a literature survey. Rubber chemistry and technology 2004, 77 (3), 391-412.
3. Mrue, F.; Netto, J. C.; Ceneviva, R.; Lachat, J. J.; Thomazini, J. A.; Tambelini, H. J. M. r., Evaluation of the biocompatibility of a new biomembrane. Materials research 2004, 7 (2), 277-283.
4. Saintier, N.; Cailletaud, G.; Piques, R. J. I. j. o. f., Crack initiation and propagation under multiaxial fatigue in a natural rubber. International journal of fatigue 2006, 28 (1), 61-72.
5. Rahimi, A.; Mashak, A. J. P., rubber; composites, Review on rubbers in medicine: natural, silicone and polyurethane rubbers. Plastics, rubber and composites 2013, 42 (6), 223-230.
6. Le Cam, J.-B. J. P., Energy storage due to strain-induced crystallization in natural rubber: the physical origin of the mechanical hysteresis. Polymer 2017, 127, 166-173.
7. Ren, J.; Silva, A. S.; Krishnamoorti, R. J. M., Linear viscoelasticity of disordered polystyrene− polyisoprene block copolymer based layered-silicate nanocomposites. Macromolecules 2000, 33 (10), 3739-3746.
8. Hayakawa, I.; Keh, E.-S.; Morizawa, M.; Muraoka, G.; Hirano, S. J. J. o. d., A new polyisoprene-based light-curing denture soft lining material. Journal of dentistry 2003, 31 (4), 269-274.
9. Rattanasom, N.; Saowapark, T.; Deeprasertkul, C. J. P. t., Reinforcement of natural rubber with silica/carbon black hybrid filler. Polym. Test 2007, 26 (3), 369-377.
10. Hagen, R.; Salmén, L.; Stenberg, B. J. J. o. P. S. P. B. P. P., Effects of the type of crosslink on viscoelastic properties of natural rubber. Journal of Polymer Science Part B: Polymer Physics 1996, 34 (12), 1997-2006.
11. Boochathum, P.; Prajudtake, W. J. E. P. J., Vulcanization of cis-and trans-polyisoprene and their blends: cure characteristics and crosslink distribution. Eur. Polym. J. 2001, 37 (3), 417-427.
12. Ponnamma, D.; Sadasivuni, K. K.; Varughese, K.; Thomas, S.; AlMa’adeed, M. A.-A., Natural polyisoprene composites and their electronic applications. In Flexible and Stretchable Electronic Composites, Springer: 2016; pp 1-35.
13. Au-Duong, A.-N.; Wu, C.-C.; Li, Y.-T.; Huang, Y.-S.; Cai, H.-Y.; Jo Hai, I.; Cheng, Y.-H.; Hu, C.-C.; Lai, J.-Y.; Kuo, C.-C. J. M., Synthetic Concept of Intrinsically Elastic Luminescent Polyfluorene-Based Copolymers via RAFT Polymerization. Macromolecules 2020, 53 (10), 4030-4037.
14. Niu, Z.; Wu, R.; Yang, Y.; Huang, L.; Fan, W.; Dai, Q.; Cui, L.; He, J.; Bai, C. J. P., Recyclable, robust and shape memory vitrified polyisoprene composite prepared through a green methodology. Polymer 2021, 228, 123864.
15. Hernández, M.; Grande, A. M.; van der Zwaag, S.; Garcia, S. J. J. A. A. M.; Interfaces, Monitoring network and interfacial healing processes by broadband dielectric spectroscopy: A case study on natural rubber. ACS Appl. Mater. Interfaces 2016, 8 (16), 10647-10656.
16. Hernandez, M.; Grande, A. M.; Dierkes, W.; Bijleveld, J.; Van Der Zwaag, S.; García, S. J. J. A. s. c.; engineering, Turning vulcanized natural rubber into a self-healing polymer: Effect of the disulfide/polysulfide ratio. ACS Sustain. Chem. Eng. 2016, 4 (10), 5776-5784.
17. Yang, X.; Liu, J.; Fan, D.; Cao, J.; Huang, X.; Zheng, Z.; Zhang, X. J. C. E. J., Scalable manufacturing of real-time self-healing strain sensors based on brominated natural rubber. Chemical Engineering Journal 2020, 389, 124448.
18. Nie, Y.; Huang, G.; Qu, L.; Zhang, P.; Weng, G.; Wu, J. J. J. o. a. p. s., Cure kinetics and morphology of natural rubber reinforced by the in situ polymerization of zinc dimethacrylate. Journal of applied polymer science 2010, 115 (1), 99-106.
19. Xu, C.; Cao, L.; Lin, B.; Liang, X.; Chen, Y. J. A. a. m.; interfaces, Design of self-healing supramolecular rubbers by introducing ionic cross-links into natural rubber via a controlled vulcanization. ACS Appl. Mater. Interfaces 2016, 8 (27), 17728-17737.
20. Xu, C.; Cao, L.; Huang, X.; Chen, Y.; Lin, B.; Fu, L. J. A. a. m.; interfaces, Self-healing natural rubber with tailorable mechanical properties based on ionic supramolecular hybrid network. ACS Appl. Mater. Interfaces 2017, 9 (34), 29363-29373.
21. Chen, X.; Dam, M. A.; Ono, K.; Mal, A.; Shen, H.; Nutt, S. R.; Sheran, K.; Wudl, F. J. S., A thermally re-mendable cross-linked polymeric material. Science 2002, 295 (5560), 1698-1702.
22. Montarnal, D.; Capelot, M.; Tournilhac, F.; Leibler, L. J. S., Silica-like malleable materials from permanent organic networks. Science 2011, 334 (6058), 965-968.
23. Cordier, P.; Tournilhac, F.; Soulié-Ziakovic, C.; Leibler, L. J. N., Self-healing and thermoreversible rubber from supramolecular assembly. Nature 2008, 451 (7181), 977-980.
24. Yanagisawa, Y.; Nan, Y.; Okuro, K.; Aida, T. J. S., Mechanically robust, readily repairable polymers via tailored noncovalent cross-linking. Science 2018, 359 (6371), 72-76.
25. Miwa, Y.; Kurachi, J.; Kohbara, Y.; Kutsumizu, S. J. C. C., Dynamic ionic crosslinks enable high strength and ultrastretchability in a single elastomer. Communications Chemistry 2018, 1 (1), 1-8.
26. Miwa, Y.; Yamada, M.; Shinke, Y.; Kutsumizu, S. J. P. C., Autonomous self-healing polyisoprene elastomers with high modulus and good toughness based on the synergy of dynamic ionic crosslinks and highly disordered crystals. Polym. Chem. 2020, 11 (41), 6549-6558.
27. Lai, J.-C.; Jia, X.-Y.; Wang, D.-P.; Deng, Y.-B.; Zheng, P.; Li, C.-H.; Zuo, J.-L.; Bao, Z. J. N. c., Thermodynamically stable whilst kinetically labile coordination bonds lead to strong and tough self-healing polymers. Nature communications 2019, 10 (1), 1-9.
28. Wang, H.; Liu, H.; Cao, Z.; Li, W.; Huang, X.; Zhu, Y.; Ling, F.; Xu, H.; Wu, Q.; Peng, Y. J. P. o. t. N. A. o. S., Room-temperature autonomous self-healing glassy polymers with hyperbranched structure. Proceedings of the National Academy of Sciences 2020, 117 (21), 11299-11305.
29. Luo, M.-C.; Zeng, J.; Fu, X.; Huang, G.; Wu, J. J. P., Toughening diene elastomers by strong hydrogen bond interactions. Polymer 2016, 106, 21-28.
30. Wu, B.; Lei, Y.; Xiao, Y.; Wang, Y.; Yuan, Y.; Jiang, L.; Zhang, X.; Lei, J. J. M. M.; Engineering, A Bio‐Inspired and Biomass‐Derived Healable Photochromic Material Induced by Hierarchical Structural Design. Macromol. Mater. Eng. 2020, 305 (1), 1900539.
31. Kang, J.; Son, D.; Wang, G. J. N.; Liu, Y.; Lopez, J.; Kim, Y.; Oh, J. Y.; Katsumata, T.; Mun, J.; Lee, Y. J. A. M., Tough and water‐insensitive self‐healing elastomer for robust electronic skin. Adv. Mater. 2018, 30 (13), 1706846.
32. Imbernon, L.; Norvez, S. J. E. P. J., From landfilling to vitrimer chemistry in rubber life cycle. Eur. Polym. J. 2016, 82, 347-376.
33. Xu, C.; Nie, J.; Wu, W.; Fu, L.; Lin, B., Design of self-healable supramolecular hybrid network based on carboxylated styrene butadiene rubber and nano-chitosan. Carbohydrate polymers 2019, 205, 410-419.
34. Ismail, N. I.; Hashim, Y. Z. H.-Y.; Jamal, P.; Othman, R.; Salleh, H. M. J. I. J. o. B. f. W. I., Production of cysteine: approaches, challenges and potential Solution. International Journal of Biotechnology for Wellness Industries 2014, 3 (3), 95-101.
35. Rousset, A.; Amor, A.; Punvichai, T.; Perino, S.; Palu, S.; Dorget, M.; Pioch, D.; Chemat, F. J. M., Guayule (Parthenium argentatum A. Gray), a Renewable Resource for Natural Polyisoprene and Resin: Composition, Processes and Applications. Molecules 2021, 26 (3), 664.
36. Kohjiya, S.; Ikeda, Y., Chemistry, manufacture and applications of natural rubber. Woodhead Publishing: 2021.
37. Kind, D. J.; Hull, T. R. J. P. D.; Stability, A review of candidate fire retardants for polyisoprene. Polymer Degradation and Stability 2012, 97 (3), 201-213.
38. Cornish, K.; Brichta, J. L.; Yu, P.; Wood, D. F.; McGlothlin, M. W.; Martin, J. A. J. A. F. I. H. T., Guayule latex provides a solution for the critical demands of the non-allergenic medical products market. Agro Food Industry Hi Tech 2001, 12 (6), 27-32.
39. De, S. K.; White, J. R., Rubber Technologist’s Handbook, Rapra Technology Limited, United Kingdom. 2001.
40. Tanaka, Y. J. P. i. P. S., Structure and biosynthesis mechanism of natural polyisoprene. Progress in Polymer Science 1989, 14 (3), 339-371.
41. Ciullo, P. A.; Hewitt, N.; Ciullo, P.; Hewitt, N. J. T. R. F., Compounding materials. The Rubber Formulary 1999, 4-49.
42. McKeen, L. W., The effect of UV light and weather on plastics and elastomers. William Andrew: 2019.
43. Mark, J. E.; Erman, B.; Roland, M., The science and technology of rubber. Academic press: 2013.
44. McDonel, E.; Baranwal, K.; Andries, J., ‘Polymer Blends. vol: 1978.
45. Joseph, P.; Ebdon, J. R. J. F. r. m., Recent developments in flame-retarding thermoplastics and thermosets. Fire retardant materials 2000, 1, 220-263.
46. Mohammad, A.; Simon, G. P., Rubber-clay nanocomposites. In Polymer nanocomposites, Woodhead Publishing Limited: 2006; pp 297-325.
47. Knite, M. r.; Tupureina, V.; Fuith, A.; Zavickis, J.; Teteris, V. J. M. S.; C, E., Polyisoprene—multi-wall carbon nanotube composites for sensing strain. Materials Science and Engineering: C 2007, 27 (5-8), 1125-1128.
48. Tanaka, Y., Recent advances in structural characterization of elastomers. Rubber chemistry and technology 1991, 64 (3), 325-385.
49. Rowland, R. L.; Latimer, P.; Giles, J., Flue-cured tobacco. I. Isolation of solanesol, an unsaturated alcohol. Journal of the American Chemical Society 1956, 78 (18), 4680-4683.
50. Yan, N.; Liu, Y.; Gong, D.; Du, Y.; Zhang, H.; Zhang, Z., Solanesol: A review of its resources, derivatives, bioactivities, medicinal applications, and biosynthesis. Phytochemistry Reviews 2015, 14 (3), 403-417.
51. Isono, T.; Komaki, R.; Lee, C.; Kawakami, N.; Ree, B. J.; Watanabe, K.; Yoshida, K.; Mamiya, H.; Yamamoto, T.; Borsali, R., Rapid access to discrete and monodisperse block co-oligomers from sugar and terpenoid toward ultrasmall periodic nanostructures. Communications Chemistry 2020, 3 (1), 1-9.
52. Ho, C.-H.; Lin, Y.-C.; Yang, W.-C.; Ercan, E.; Chiang, Y.-C.; Lin, B.-H.; Kuo, C.-C.; Chen, W.-C., Fast Photoresponsive Phototransistor Memory Using Star-Shaped Conjugated Rod–Coil Molecules as a Floating Gate. ACS Appl. Mater. Interfaces 2022, 14 (13), 15468-15477.
53. Chiang, Y. C.; Hung, C. C.; Lin, Y. C.; Chiu, Y. C.; Isono, T.; Satoh, T.; Chen, W. C., High‐Performance Nonvolatile Organic Photonic Transistor Memory Devices using Conjugated Rod–Coil Materials as a Floating Gate. Adv. Mater. 2020, 32 (36), 2002638.
54. Naebe, M.; Abolhasani, M. M.; Khayyam, H.; Amini, A.; Fox, B. J. P. r., Crack damage in polymers and composites: A review. Polymer reviews 2016, 56 (1), 31-69.
55. Talreja, R.; Singh, C. V., Damage and failure of composite materials. Cambridge University Press: 2012.
56. Blaiszik, B. J.; Kramer, S. L.; Olugebefola, S. C.; Moore, J. S.; Sottos, N. R.; White, S. R. J. A. r. o. m. r., Self-healing polymers and composites. Annual review of materials research 2010, 40, 179-211.
57. Patrick, J. F.; Robb, M. J.; Sottos, N. R.; Moore, J. S.; White, S. R. J. N., Polymers with autonomous life-cycle control. Nature 2016, 540 (7633), 363-370.
58. Rajan, V.; Dierkes, W. K.; Joseph, R.; Noordermeer, J. W. J. P. i. p. s., Science and technology of rubber reclamation with special attention to NR-based waste latex products. Progress in polymer science 2006, 31 (9), 811-834.
59. Yang, Y.; Urban, M. W. J. C. S. R., Self-healing polymeric materials. Chemical Society Reviews 2013, 42 (17), 7446-7467.
60. White, S. R.; Sottos, N. R.; Geubelle, P. H.; Moore, J. S.; Kessler, M. R.; Sriram, S.; Brown, E. N.; Viswanathan, S. J. N., Autonomic healing of polymer composites. Nature 2001, 409 (6822), 794-797.
61. Toohey, K. S.; Sottos, N. R.; Lewis, J. A.; Moore, J. S.; White, S. R. J. N. m., Self-healing materials with microvascular networks. Nature materials 2007, 6 (8), 581-585.
62. Chen, X.; Wudl, F.; Mal, A. K.; Shen, H.; Nutt, S. R. J. M., New thermally remendable highly cross-linked polymeric materials. Macromolecules 2003, 36 (6), 1802-1807.
63. Liu, Y. L.; Chen, Y. W. J. M. C.; Physics, Thermally reversible cross‐linked polyamides with high toughness and self‐repairing ability from maleimide‐and furan‐functionalized aromatic polyamides. Macromol. Chem. Phys. 2007, 208 (2), 224-232.
64. Zeng, C.; Seino, H.; Ren, J.; Hatanaka, K.; Yoshie, N. J. M., Bio-based furan polymers with self-healing ability. Macromolecules 2013, 46 (5), 1794-1802.
65. Canadell, J.; Goossens, H.; Klumperman, B. J. M., Self-healing materials based on disulfide links. Macromolecules 2011, 44 (8), 2536-2541.
66. Deng, G.; Li, F.; Yu, H.; Liu, F.; Liu, C.; Sun, W.; Jiang, H.; Chen, Y. J. A. M. L., Dynamic hydrogels with an environmental adaptive self-healing ability and dual responsive sol–gel transitions. ACS Macro Letters 2012, 1 (2), 275-279.
67. Herbst, F.; Seiffert, S.; Binder, W. H. J. P. C., Dynamic supramolecular poly (isobutylene) s for self-healing materials. 2012, 3 (11), 3084-3092.
68. Chen, Y.; Kushner, A. M.; Williams, G. A.; Guan, Z. J. N. c., Multiphase design of autonomic self-healing thermoplastic elastomers. Nature chemistry 2012, 4 (6), 467-472.
69. Peng, Y.; Zhao, L.; Yang, C.; Yang, Y.; Song, C.; Wu, Q.; Huang, G.; Wu, J. J. J. o. M. C. A., Super tough and strong self-healing elastomers based on polyampholytes. J. Mater. Chem. A 2018, 6 (39), 19066-19074.
70. Si, P.; Jiang, F.; Cheng, Q. S.; Rivers, G.; Xie, H.; Kyaw, A. K. K.; Zhao, B. J. J. o. M. C. A., Triple non-covalent dynamic interactions enabled a tough and rapid room temperature self-healing elastomer for next-generation soft antennas. J. Mater. Chem. A 2020, 8 (47), 25073-25084.
71. Madsen, F. B.; Yu, L.; Skov, A. L. J. A. M. L., Self-healing, high-permittivity silicone dielectric elastomer. ACS Macro Letters 2016, 5 (11), 1196-1200.
72. Nakahata, M.; Takashima, Y.; Yamaguchi, H.; Harada, A. J. N. c., Redox-responsive self-healing materials formed from host–guest polymers. Nature communications 2011, 2 (1), 1-6.
73. Sandmann, B.; Bode, S.; Hager, M. D.; Schubert, U. S., Metallopolymers as an emerging class of self-healing materials. In Hierarchical Macromolecular Structures: 60 Years after the Staudinger Nobel Prize II, Springer: 2013; pp 239-257.
74. Bailey, B. M.; Leterrier, Y.; Garcia, S.; Van Der Zwaag, S.; Michaud, V. J. P. i. O. C., Electrically conductive self-healing polymer composite coatings. Progress in Organic Coatings 85 2015, 85, 189-198.
75. Willocq, B.; Bose, R.; Khelifa, F.; Garcia, S.; Dubois, P.; Raquez, J.-M. J. J. o. M. C. A., Healing by the Joule effect of electrically conductive poly (ester-urethane)/carbon nanotube nanocomposites. J. Mater. Chem. A 2016, 4 (11), 4089-4097.
76. Zhong, N.; Garcia, S. J.; Van der Zwaag, S. J. S. M.; Structures, The effect of filler parameters on the healing of thermal conductivity and mechanical properties of a thermal interface material based on a self-healable organic–inorganic polymer matrix. Smart Materials and Structures 2016, 25 (8), 084016.
77. Zhang, Z. P.; Rong, M. Z.; Zhang, M. Q. J. P. i. P. S., Polymer engineering based on reversible covalent chemistry: A promising innovative pathway towards new materials and new functionalities. 2018, 80, 39-93.
78. Rahman, M. A.; Penco, M.; Peroni, I.; Ramorino, G.; Grande, A. M.; Di Landro, L. J. A. a. m.; interfaces, Self-repairing systems based on ionomers and epoxidized natural rubber blends. ACS Appl. Mater. Interfaces 2011, 3 (12), 4865-4874.
79. Rahman, M. A.; Sartore, L.; Bignotti, F.; Di Landro, L. J. A. a. m.; interfaces, Autonomic self-healing in epoxidized natural rubber. ACS Appl. Mater. Interfaces 2013, 5 (4), 1494-1502.
80. Rhaman, M. A.; Penco, M.; Spagnoli, G.; Grande, A. M.; Di Landro, L. J. M. M.; Engineering, Self‐Healing Behavior of Blends Based on Ionomers with Ethylene/Vinyl Alcohol Copolymer or Epoxidized Natural Rubber. Macromol. Mater. Eng. 2011, 296 (12), 1119-1127.
81. Yang, X.; Liu, J.; Fan, D.; Cao, J.; Huang, X.; Zheng, Z.; Zhang, X., Scalable manufacturing of real-time self-healing strain sensors based on brominated natural rubber. Chemical Engineering Journal 2020, 389.
82. Miwa, Y.; Kurachi, J.; Kohbara, Y.; Kutsumizu, S., Dynamic ionic crosslinks enable high strength and ultrastretchability in a single elastomer. Communications Chemistry 2018, 1 (1).
83. Miwa, Y.; Yamada, M.; Shinke, Y.; Kutsumizu, S., Autonomous self-healing polyisoprene elastomers with high modulus and good toughness based on the synergy of dynamic ionic crosslinks and highly disordered crystals. Polym. Chem. 2020, 11 (41), 6549-6558.
84. Liu, J.; Xiao, C.; Tang, J.; Liu, Y.; Hua, J. J. I.; Research, E. C., Construction of a dual ionic network in natural rubber with high self-healing efficiency through anionic mechanism. Industrial & Engineering Chemistry Research 2020, 59 (28), 12755-12765.
85. Ding, Y.; Wang, J.; Song, S., Synthesis and Characterization of Linear Polyisoprene Supramolecular Elastomers Based on Quadruple Hydrogen Bonding. Polymers (Basel) 2020, 12 (1).
86. Bai, J.; Li, H.; Shi, Z.; Yin, J. J. M., An eco-friendly scheme for the cross-linked polybutadiene elastomer via thiol–ene and Diels–Alder click chemistry. Macromolecules 2015, 48 (11), 3539-3546.
87. Behera, P. K.; Mohanty, S.; Gupta, V. K. J. P. C., Self-healing elastomers based on conjugated diolefins: a review. Polym. Chem. 2021, 12 (11), 1598-1621.
88. Trovatti, E.; Lacerda, T. M.; Carvalho, A. J.; Gandini, A. J. A. M., Recycling tires? Reversible crosslinking of poly (butadiene). Adv. Mater. 2015, 27 (13), 2242-2245.
89. Türünç, O.; Meier, M. A. J. M. r. c., Fatty acid derived monomers and related polymers via thiol‐ene (click) additions. Macromol. Rapid Commun. 2010, 31 (20), 1822-1826.
90. Wang, D.; Guo, J.; Zhang, H.; Cheng, B.; Shen, H.; Zhao, N.; Xu, J. J. J. o. M. C. A., Intelligent rubber with tailored properties for self-healing and shape memory. J. Mater. Chem. A 2015, 3 (24), 12864-12872.
91. Xiang, H.; Yin, J.; Lin, G.; Liu, X.; Rong, M.; Zhang, M. J. C. E. J., Photo-crosslinkable, self-healable and reprocessable rubbers. Chemical Engineering Journal 2019, 358, 878-890.
92. Ikura, R.; Park, J.; Osaki, M.; Yamaguchi, H.; Harada, A.; Takashima, Y. J. N. A. M., Design of self-healing and self-restoring materials utilizing reversible and movable crosslinks. NPG Asia Materials 2022, 14 (1), 1-17.
93. Sijbesma, R. P.; Beijer, F. H.; Brunsveld, L.; Folmer, B. J.; Hirschberg, J. K.; Lange, R. F.; Lowe, J. K.; Meijer, E. J. S., Reversible polymers formed from self-complementary monomers using quadruple hydrogen bonding. Science 1997, 278 (5343), 1601-1604.
94. Ohkawa, H.; Ligthart, G.; Sijbesma, R. P.; Meijer, E., Supramolecular graft copolymers based on 2, 7-diamido-1, 8-naphthyridines. Macromolecules 2007, 40 (5), 1453-1459.
95. Hirschberg, J. K.; Beijer, F. H.; van Aert, H. A.; Magusin, P. C.; Sijbesma, R. P.; Meijer, E., Supramolecular polymers from linear telechelic siloxanes with quadruple-hydrogen-bonded units. Macromolecules 1999, 32 (8), 2696-2705.
96. Cui, J.; del Campo, A., Multivalent H-bonds for self-healing hydrogels. Chemical Communications 2012, 48 (74), 9302-9304.
97. Hentschel, J.; Kushner, A. M.; Ziller, J.; Guan, Z., Self‐healing supramolecular block copolymers. Angewandte Chemie 2012, 124 (42), 10713-10717.
98. Yanagisawa, Y.; Nan, Y.; Okuro, K.; Aida, T., Mechanically robust, readily repairable polymers via tailored noncovalent cross-linking. Science 2018, 359 (6371), 72-76.
99. Ying, H.; Zhang, Y.; Cheng, J., Dynamic urea bond for the design of reversible and self-healing polymers. Nature communications 2014, 5 (1), 1-9.
100. Herbst, F.; Seiffert, S.; Binder, W. H. J. P. C., Dynamic supramolecular poly (isobutylene) s for self-healing materials. Polym. Chem. 2012, 3 (11), 3084-3092.
101. Ming-zhe, L.; Li-feng, W.; Lei, F.; Pu-wang, L.; Si-dong, L., Preparation and properties of natural rubber/chitosan microsphere blends. Micro & Nano Letters 2017, 12 (6), 386-390.
102. Ismail, H.; Shaari, S.; Othman, N., The effect of chitosan loading on the curing characteristics, mechanical and morphological properties of chitosan-filled natural rubber (NR), epoxidised natural rubber (ENR) and styrene-butadiene rubber (SBR) compounds. Polym. Test 2011, 30 (7), 784-790.
103. Sattar, M. A.; Gangadharan, S.; Patnaik, A. J. A. o., Design of dual hybrid network natural rubber–SiO2 elastomers with tailored mechanical and self-healing properties. ACS Omega 2019, 4 (6), 10939-10949.
104. Ryu, O. H.; Ju, J. Y.; Shin, C. S., Continuous L-cysteine production using immobilized cell reactors and product extractors. Process biochemistry 1997, 32 (3), 201-209.
105. Ismail, N. I.; Hashim, Y. Z. H.-Y.; Jamal, P.; Othman, R.; Salleh, H. M., Production of cysteine: approaches, challenges and potential solution. International Journal of Biotechnology for Wellness Industries 2014, 3 (3), 95-101.
106. Marques, D. R.; Santos, L. A. d.; Schopf, L. F.; Fraga, J. C. S. d. J. P., Analysis of poly (lactic-co-glycolic acid)/poly (isoprene) polymeric blend for application as biomaterial. Polímeros 2013, 23 (5), 579-584.
107. Sangeetha, J.; Philip, J. J. R. a., Synthesis, characterization and antimicrobial property of Fe 3 O 4-Cys-HNQ nanocomplex, with l-cysteine molecule as a linker. RSC Adv. 2013, 3 (21), 8047-8057.
108. Soomro, R. A.; Nafady, A.; Memon, N.; Sherazi, T. H.; Kalwar, N. H. J. T., L-cysteine protected copper nanoparticles as colorimetric sensor for mercuric ions. Talanta 2014, 130, 415-422.
109. Chen, N.-x.; Zhang, J.-h. J. C. J. o. P. S., The role of hydrogen-bonding interaction in poly (vinyl alcohol)/poly (acrylic acid) blending solutions and their films. Chin. J. Polym. Sci. 2010, 28 (6), 903-911.
110. Chino, K.; Ashiura, M. J. M., Themoreversible cross-linking rubber using supramolecular hydrogen-bonding networks. Macromolecules 2001, 34 (26), 9201-9204.
111. Wang, D.; Xu, J.; Chen, J.; Hu, P.; Wang, Y.; Jiang, W.; Fu, J. J. A. F. M., Transparent, mechanically strong, extremely tough, self‐recoverable, healable supramolecular elastomers facilely fabricated via dynamic hard domains design for multifunctional applications. Advanced Functional Materials 2020, 30 (3), 1907109.
112. Yang, R.; Yao, Y.; Duan, Z.; Yuan, Z.; Tai, H.; Jiang, Y.; Zheng, Y.; Wang, D. J. L., Constructing Electrically and Mechanically Self-Healing Elastomers by Hydrogen Bonded Intermolecular Network. Langmuir 2020, 36 (12), 3029-3037.
113. Li, Y.; Li, W.; Sun, A.; Jing, M.; Liu, X.; Wei, L.; Wu, K.; Fu, Q. J. M. H., A self-reinforcing and self-healing elastomer with high strength, unprecedented toughness and room-temperature reparability. Materials Horizons 2021, 8 (1), 267-275.
114. Bernardes, G. J.; Gamblin, D. P.; Davis, B. G., The direct formation of glycosyl thiols from reducing sugars allows one‐pot protein glycoconjugation. Angewandte Chemie 2006, 118 (24), 4111-4115.
115. Khatoon, H.; Abdulmalek, E., A Focused Review of Synthetic Applications of Lawesson’s Reagent in Organic Synthesis. Molecules 2021, 26 (22), 6937.
116. Isono, T.; Miyachi, K.; Satoh, Y.; Nakamura, R.; Zhang, Y.; Otsuka, I.; Tajima, K.; Kakuchi, T.; Borsali, R.; Satoh, T., Self-assembly of maltoheptaose-block-polycaprolactone copolymers: Carbohydrate-decorated nanoparticles with tunable morphology and size in aqueous media. Macromolecules 2016, 49 (11), 4178-4194.
117. Isono, T.; Nakahira, S.; Hsieh, H.-C.; Katsuhara, S.; Mamiya, H.; Yamamoto, T.; Chen, W.-C.; Borsali, R.; Tajima, K.; Satoh, T., Carbohydrates as hard segments for sustainable elastomers: carbohydrates direct the self-assembly and mechanical properties of fully bio-based block copolymers. Macromolecules 2020, 53 (13), 5408-5417.

無法下載圖示 全文公開日期 2025/11/03 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 2027/11/03 (國家圖書館:臺灣博碩士論文系統)
QR CODE