簡易檢索 / 詳目顯示

研究生: 鄭宇軒
Yu-Hsuan Cheng
論文名稱: 彈性且自修復半導體高分子研究 暨其電晶體應用
Research on Elastic and Self-Healing Semiconductor Polymer and Transistor Application
指導教授: 邱昱誠
Yu-Cheng Chiu
口試委員: 陳志堅
Jyh-Chien Chen
莊偉綜
Wei-Tsung Chuang
王建隆
Chien-Lung Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 116
中文關鍵詞: 抗裂性半導體聚合物自主自修復空氣穩定裝置
外文關鍵詞: crack resistance, semiconducting polymers, autonomous self-healing, air-stable devices
相關次數: 點閱:311下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今對軟性和可穿戴式電子元件的需求不斷的增長,材料是必須要能耐受應力。儘管有機材料具有較高的容忍性,但然而,完全π共軛的半導體材料因其剛性與較差的抵抗性,使得在循環的載荷條件下材料的機械故障是不可避免的而導致裂紋的擴展。為了解決這類的問題,我們提出了一種具有抗撕裂性和室溫下可自我修復的半導體複合材料,該複合材料是透過物理混合共軛高分子與丁基橡膠彈性體而組成。這種新的複合材料展現出創紀錄的低彈性模量(<1 MPa)和超高的變形能力,其斷裂應變超過800%。此外,僅需通過將兩個單獨薄膜透過簡單地物理接觸,及可的物理接觸展現了在室溫下的自動自我修復,其中包含的機械性質和電性。由於大大提高了對氧氣和水的阻隔性能,該複合材料還顯示出超過五個月的長效元件大氣穩定性。另一方面,丁基橡膠廣泛適用於各種P型和N型半導體聚合物,用於製造可自我修復的電子器件,從而提供可模仿人類皮膚的抗撕裂性和可自我修復特性的新型彈性電子器件。


    Nowadays the demands for soft and wearable electronic are increasing, material can afford strain must need. Although organic materials have better tolerance, but the mechanical failure of fully π-conjugated semiconducting materials are unavoidable under cyclic loading conditions, due to their rigid properties and poor resistance leading crack propagation. To solve this problem, we present a tear-resistant and room-temperature self-healable semiconducting composite, consisting with conjugated polymers and butyl rubber elastomers by physical blending. This new composite demonstrated record-low elastic modulus (< 1 MPa) and ultra-high deformability with fracture strain above 800%. Furthermore, only easily physical contact of two separate films that can autonomous self-healing at room temperature, both mechanical and electronic. Besides, the composite film also exhibits long-term device stability in the ambient environment over five months due to much-improved barrier property to both oxygen and water. On the other hand, Butyl rubber is broadly applicable to various P-type and N-type semiconducting polymers for fabricating self-healable electronics to provide new resilient electronics that mimic the tear resistance and healable property of human skin.

    Contents Abstract i 中文摘要 ii Contents iii Table Caption v Figure Caption vii Chapter 1 Introduction 1 1.1 Basic Concept of Organic Field-Effect Transistors (OFETs) 1 1.1.1 Device Structure of OFETs 2 1.1.2 Principle of OFETs 5 1.1.3 Characteristic Parameter 6 1.2 Development of Soft Organic Field-Effect Transistors (OFETs) 9 1.2.1 Small Molecule for OFETs 10 1.2.2 Polymer for OFETs 14 1.3 Extrinsically Stretchable Electronics 19 1.4 Intrinsically Stretchable Semiconducting Polymers 21 1.4.1 Stretchable Conjugated Polymer by Backbone Engineering 21 1.4.2 Stretchable Conjugated Polymers by Side-Chain Engineering 26 1.4.3 Stretchable Conjugated Polymer via Chain Cross-Linking 29 1.4.5 Stretchable and Healable Conjugated Polymer 35 1.5 Motivations and Research Objective 40 Chapter 2 Result and Discussion 41 2.2 Material and Equipment 43 2.2.1 Material 43 2.2.2 Equipment 44 2.3 Mechanical Properties of PDPPTVT/BR Composites 45 2.4 Electrical Performance with Different Blend Ratios 49 2.4.1 OFET Fabrication with Different Blend Ratios 49 2.4.2 OFET Characteristics with Different Blend Ratios 50 2.5 Characterization of PDPPTVT/BR Composite 53 2.5.1 AFM-IR 53 2.5.2 GIWAXS Analysis 56 2.5.3 UV-Vis Spectroscopy Analysis 58 2.6 Electrical Performance with Stretched Films 60 2.6.1 OFET Fabrication with Stretched Films 60 2.6.2 OFET Characteristics with Stretched Film 61 2.6.3 Ambient Stability 64 2.7 Self-Healing Property 67 2.7.1 Fabrication of Free-Standing Thin Films 67 2.7.2 Self-Healing Mechanism 69 2.7.3 OFET Fabrication and Characteristics with Self-Healing Thin Film 72 2.7.4 Durability of Self-Healing Thin Film 77 Chapter 3 Conclusion and Future Work 88 Reference 90

    1. Tsumura, A.; Koezuka, H.; Ando, T., Macromolecular electronic device: Field‐effect transistor with a polythiophene thin film. Applied Physics Letters 1986, 49 (18), 1210-1212.
    2. Klauk, H.; Halik, M.; Zschieschang, U.; Schmid, G.; Radlik, W.; Weber, W., High-mobility polymer gate dielectric pentacene thin film transistors. Journal of Applied Physics 2002, 92 (9), 5259-5263.
    3. Kumar, B.; Kaushik, B. K.; Negi, Y. S., Organic Thin Film Transistors: Structures, Models, Materials, Fabrication, and Applications: A Review. Polymer Reviews 2014, 54 (1), 33-111.
    4. Zhang, X.; Zhang, J.; Zhang, W.; Hou, X., Fabrication and comparative study of top-gate and bottom-gate ZnO–TFTs with various insulator layers. Journal of Materials Science: Materials in Electronics 2010, 21 (7), 671-675.
    5. Mittal, P.; Kumar, B.; Negi, Y. S.; Kaushik, B. K.; Singh, R. K., Channel length variation effect on performance parameters of organic field effect transistors. Microelectronics Journal 2012, 43 (12), 985-994.
    6. Horowitz, G., Organic Field-Effect Transistors. Advanced Materials 1998, 10 (5), 365-377.
    7. Sze, S. M.; Ng, K. K., Physics of Semiconductor Devices. Wiley: 2006.
    8. Bao, Z.; Locklin, J., Organic Field-Effect Transistors. CRC Press, Inc.: 2007.
    9. Choi, H. H.; Cho, K.; Frisbie, C. D.; Sirringhaus, H.; Podzorov, V., Critical assessment of charge mobility extraction in FETs. Nature Materials 2018, 17 (1), 2-7.
    10. Ito, Y.; Virkar, A. A.; Mannsfeld, S.; Oh, J. H.; Toney, M.; Locklin, J.; Bao, Z., Crystalline Ultrasmooth Self-Assembled Monolayers of Alkylsilanes for Organic Field-Effect Transistors. Journal of the American Chemical Society 2009, 131 (26), 9396-9404.
    11. Halik, M.; Klauk, H.; Zschieschang, U.; Schmid, G.; Dehm, C.; Schütz, M.; Maisch, S.; Effenberger, F.; Brunnbauer, M.; Stellacci, F., Low-voltage organic transistors with an amorphous molecular gate dielectric. Nature 2004, 431 (7011), 963-966.
    12. Sirringhaus, H.; Friend, R. H.; Li, X. C.; Moratti, S. C.; Holmes, A. B.; Feeder, N., Bis(dithienothiophene) organic field-effect transistors with a high ON/OFF ratio. Applied Physics Letters 1997, 71 (26), 3871-3873.
    13. Reséndiz, L.; Estrada, M.; Cerdeira, A.; Iñiguez, B.; Deen, M. J., Effect of active layer thickness on the electrical characteristics of polymer thin film transistors. Organic Electronics 2010, 11 (12), 1920-1927.
    14. Kudo, K.; Yamashina, M.; Moriizumi, T., Field Effect Measurement of Organic Dye Films. Japanese Journal of Applied Physics 1984, 23 (Part 1, No. 1), 130-130.
    15. Madru, M.; Guillaud, G.; Sadoun, M. A.; Maitrot, M.; Clarisse, C.; Contellec, M. L.; André, J. J.; Simon, J., The first field effect transistor based on an intrinsic molecular semiconductor. Chemical Physics Letters 1987, 142 (1), 103-105.
    16. Clarisse, C.; Riou, M. T.; Gauneau, M.; Contellec, M. L., Field-effect transistor with diphthalocyanine thin film. Electronics Letters 1988, 24 (11), 674-675.
    17. Horowitz, G.; Fichou, D.; Peng, X.; Xu, Z.; Garnier, F., A field-effect transistor based on conjugated alpha-sexithienyl. Solid State Communications 1989, 72 (4), 381-384.
    18. Garnier, F.; Horowitz, G.; Peng, X.; Fichou, D., An all-organic 'soft' thin film transistor with very high carrier mobility. Advanced Materials 1990, 2 (12), 592-594.
    19. Yen-Yi, L.; Gundlach, D. I.; Nelson, S. F.; Jackson, T. N., Pentacene-based organic thin-film transistors. IEEE Transactions on Electron Devices 1997, 44 (8), 1325-1331.
    20. Lin, Y.; Gundlach, D. J.; Nelson, S. F.; Jackson, T. N., Stacked pentacene layer organic thin-film transistors with improved characteristics. IEEE Electron Device Letters 1997, 18 (12), 606-608.
    21. Yang, S. Y.; Shin, K.; Park, C. E., The Effect of Gate-Dielectric Surface Energy on Pentacene Morphology and Organic Field-Effect Transistor Characteristics. Advanced Functional Materials 2005, 15 (11), 1806-1814.
    22. Meyer zu Heringdorf, F.-J.; Reuter, M. C.; Tromp, R. M., Growth dynamics of pentacene thin films. Nature 2001, 412 (6846), 517-520.
    23. Kim, C.; Facchetti, A.; Marks, T. J., Probing the Surface Glass Transition Temperature of Polymer Films via Organic Semiconductor Growth Mode, Microstructure, and Thin-Film Transistor Response. Journal of the American Chemical Society 2009, 131 (25), 9122-9132.
    24. Schiefer, S.; Huth, M.; Dobrinevski, A.; Nickel, B., Determination of the Crystal Structure of Substrate-Induced Pentacene Polymorphs in Fiber Structured Thin Films. Journal of the American Chemical Society 2007, 129 (34), 10316-10317.
    25. Kelley, T. W.; Boardman, L. D.; Dunbar, T. D.; Muyres, D. V.; Pellerite, M. J.; Smith, T. P., High-Performance OTFTs Using Surface-Modified Alumina Dielectrics. The Journal of Physical Chemistry B 2003, 107 (24), 5877-5881.
    26. Troisi, A.; Orlandi, G., Band Structure of the Four Pentacene Polymorphs and Effect on the Hole Mobility at Low Temperature. The Journal of Physical Chemistry B 2005, 109 (5), 1849-1856.
    27. Tahk, D.; Lee, H. H.; Khang, D.-Y., Elastic Moduli of Organic Electronic Materials by the Buckling Method. Macromolecules 2009, 42 (18), 7079-7083.
    28. Assadi, A.; Svensson, C.; Willander, M.; Inganäs, O., Field‐effect mobility of poly(3‐hexylthiophene). Applied Physics Letters 1988, 53 (3), 195-197.
    29. McCullough, R. D.; Lowe, R. D.; Jayaraman, M.; Anderson, D. L., Design, synthesis, and control of conducting polymer architectures: structurally homogeneous poly(3-alkylthiophenes). The Journal of Organic Chemistry 1993, 58 (4), 904-912.
    30. Bao, Z.; Dodabalapur, A.; Lovinger, A. J., Soluble and processable regioregular poly(3‐hexylthiophene) for thin film field‐effect transistor applications with high mobility. Applied Physics Letters 1996, 69 (26), 4108-4110.
    31. Sirringhaus, H.; Brown, P. J.; Friend, R. H.; Nielsen, M. M.; Bechgaard, K.; Langeveld-Voss, B. M. W.; Spiering, A. J. H.; Janssen, R. A. J.; Meijer, E. W.; Herwig, P.; de Leeuw, D. M., Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature 1999, 401 (6754), 685-688.
    32. Kline, R. J.; McGehee, M. D.; Kadnikova, E. N.; Liu, J.; Fréchet, J. M. J.; Toney, M. F., Dependence of Regioregular Poly(3-hexylthiophene) Film Morphology and Field-Effect Mobility on Molecular Weight. Macromolecules 2005, 38 (8), 3312-3319.
    33. Noriega, R.; Rivnay, J.; Vandewal, K.; Koch, F. P. V.; Stingelin, N.; Smith, P.; Toney, M. F.; Salleo, A., A general relationship between disorder, aggregation and charge transport in conjugated polymers. Nature Materials 2013, 12 (11), 1038-1044.
    34. Bässler, H.; Köhler, A., Charge transport in organic semiconductors. Top Curr Chem 2012, 312, 1-65.
    35. Kim, D.-H.; Rogers, J. A., Stretchable Electronics: Materials Strategies and Devices. Advanced Materials 2008, 20 (24), 4887-4892.
    36. Kim, D.-H.; Xiao, J.; Song, J.; Huang, Y.; Rogers, J. A., Stretchable, Curvilinear Electronics Based on Inorganic Materials. Advanced Materials 2010, 22 (19), 2108-2124.
    37. Yeo, W.-H.; Kim, Y.-S.; Lee, J.; Ameen, A.; Shi, L.; Li, M.; Wang, S.; Ma, R.; Jin, S. H.; Kang, Z.; Huang, Y.; Rogers, J. A., Multifunctional Epidermal Electronics Printed Directly Onto the Skin. Advanced Materials 2013, 25 (20), 2773-2778.
    38. Khang, D.-Y.; Jiang, H.; Huang, Y.; Rogers, J. A., A Stretchable Form of Single-Crystal Silicon for High-Performance Electronics on Rubber Substrates. Science 2006, 311 (5758), 208-212.
    39. Wu, H.-C.; Benight, S. J.; Chortos, A.; Lee, W.-Y.; Mei, J.; To, J. W. F.; Lu, C.; He, M.; Tok, J. B. H.; Chen, W.-C.; Bao, Z., A Rapid and Facile Soft Contact Lamination Method: Evaluation of Polymer Semiconductors for Stretchable Transistors. Chemistry of Materials 2014, 26 (15), 4544-4551.
    40. Müller, C.; Goffri, S.; Breiby, D. W.; Andreasen, J. W.; Chanzy, H. D.; Janssen, R. A. J.; Nielsen, M. M.; Radano, C. P.; Sirringhaus, H.; Smith, P.; Stingelin-Stutzmann, N., Tough, Semiconducting Polyethylene-poly(3-hexylthiophene) Diblock Copolymers. Advanced Functional Materials 2007, 17 (15), 2674-2679.
    41. Printz, A. D.; Savagatrup, S.; Burke, D. J.; Purdy, T. N.; Lipomi, D. J., Increased elasticity of a low-bandgap conjugated copolymer by random segmentation for mechanically robust solar cells. RSC Advances 2014, 4 (26), 13635-13643.
    42. Wu, H.-C.; Hung, C.-C.; Hong, C.-W.; Sun, H.-S.; Wang, J.-T.; Yamashita, G.; Higashihara, T.; Chen, W.-C., Isoindigo-Based Semiconducting Polymers Using Carbosilane Side Chains for High Performance Stretchable Field-Effect Transistors. Macromolecules 2016, 49 (22), 8540-8548.
    43. Zhao, W.; Cao, T.; White, J. M., On the Origin of Green Emission in Polyfluorene Polymers: The Roles of Thermal Oxidation Degradation and Crosslinking. Advanced Functional Materials 2004, 14 (8), 783-790.
    44. Davis, A. R.; Maegerlein, J. A.; Carter, K. R., Electroluminescent Networks via Photo “Click” Chemistry. Journal of the American Chemical Society 2011, 133 (50), 20546-20551.
    45. Wang, G.-J. N.; Shaw, L.; Xu, J.; Kurosawa, T.; Schroeder, B. C.; Oh, J. Y.; Benight, S. J.; Bao, Z., Inducing Elasticity through Oligo-Siloxane Crosslinks for Intrinsically Stretchable Semiconducting Polymers. Advanced Functional Materials 2016, 26 (40), 7254-7262.
    46. Wang, G.-J. N.; Gasperini, A.; Bao, Z., Stretchable Polymer Semiconductors for Plastic Electronics. Advanced Electronic Materials 2018, 4 (2), 1700429.
    47. Song, E.; Kang, B.; Choi, H. H.; Sin, D. H.; Lee, H.; Lee, W. H.; Cho, K., Stretchable and Transparent Organic Semiconducting Thin Film with Conjugated Polymer Nanowires Embedded in an Elastomeric Matrix. Advanced Electronic Materials 2016, 2 (1), 1500250.
    48. Xu, J.; Wang, S.; Wang, G.-J. N.; Zhu, C.; Luo, S.; Jin, L.; Gu, X.; Chen, S.; Feig, V. R.; To, J. W. F.; Rondeau-Gagné, S.; Park, J.; Schroeder, B. C.; Lu, C.; Oh, J. Y.; Wang, Y.; Kim, Y.-H.; Yan, H.; Sinclair, R.; Zhou, D.; Xue, G.; Murmann, B.; Linder, C.; Cai, W.; Tok, J. B. H.; Chung, J. W.; Bao, Z., Highly stretchable polymer semiconductor films through the nanoconfinement effect. Science 2017, 355 (6320), 59.
    49. Yang, Y.; Urban, M. W., Self-healing polymeric materials. Chem Soc Rev 2013, 42 (17), 7446-67.
    50. Oh, J. Y.; Rondeau-Gagné, S.; Chiu, Y.-C.; Chortos, A.; Lissel, F.; Wang, G.-J. N.; Schroeder, B. C.; Kurosawa, T.; Lopez, J.; Katsumata, T.; Xu, J.; Zhu, C.; Gu, X.; Bae, W.-G.; Kim, Y.; Jin, L.; Chung, J. W.; Tok, J. B. H.; Bao, Z., Intrinsically stretchable and healable semiconducting polymer for organic transistors. Nature 2016, 539 (7629), 411-415.
    51. Chen, Y.; Kushner, A. M.; Williams, G. A.; Guan, Z., Multiphase design of autonomic self-healing thermoplastic elastomers. Nature Chemistry 2012, 4 (6), 467-472.
    52. Cordier, P.; Tournilhac, F.; Soulié-Ziakovic, C.; Leibler, L., Self-healing and thermoreversible rubber from supramolecular assembly. Nature 2008, 451 (7181), 977-980.
    53. Oh, J. Y.; Son, D.; Katsumata, T.; Lee, Y.; Kim, Y.; Lopez, J.; Wu, H.-C.; Kang, J.; Park, J.; Gu, X.; Mun, J.; Wang, N. G.-J.; Yin, Y.; Cai, W.; Yun, Y.; Tok, J. B. H.; Bao, Z., Stretchable self-healable semiconducting polymer film for active-matrix strain-sensing array. Science Advances 2019, 5 (11), eaav3097.
    54. Herrmann, J.; Müller, K.-H.; Reda, T.; Baxter, G. R.; Raguse, B.; Groot, G. J. J. B. d.; Chai, R.; Roberts, M.; Wieczorek, L., Nanoparticle films as sensitive strain gauges. Applied Physics Letters 2007, 91 (18), 183105.
    55. Hiemenz, P. C.; Lodge, T. P., Polymer Chemistry, Second Edition. Taylor & Francis: 2007.
    56. Chen, H.; Guo, Y.; Yu, G.; Zhao, Y.; Zhang, J.; Gao, D.; Liu, H.; Liu, Y., Highly π-extended copolymers with diketopyrrolopyrrole moieties for high-performance field-effect transistors. Adv Mater 2012, 24 (34), 4618-22.
    57. Schroeder, B. C.; Chiu, Y.-C.; Gu, X.; Zhou, Y.; Xu, J.; Lopez, J.; Lu, C.; Toney, M. F.; Bao, Z., Non-Conjugated Flexible Linkers in Semiconducting Polymers: A Pathway to Improved Processability without Compromising Device Performance. Advanced Electronic Materials 2016, 2 (7), 1600104.
    58. Zhang, S.; Ocheje, M. U.; Luo, S.; Ehlenberg, D.; Appleby, B.; Weller, D.; Zhou, D.; Rondeau-Gagné, S.; Gu, X., Probing the Viscoelastic Property of Pseudo Free-Standing Conjugated Polymeric Thin Films. Macromolecular Rapid Communications 2018, 39 (14), 1800092.
    59. Huneau, B., STRAIN-INDUCED CRYSTALLIZATION OF NATURAL RUBBER: A REVIEW OF X-RAY DIFFRACTION INVESTIGATIONS. Rubber Chemistry and Technology 2011, 84 (3), 425-452.
    60. Verploegen, E.; Mondal, R.; Bettinger, C. J.; Sok, S.; Toney, M. F.; Bao, Z., Effects of Thermal Annealing Upon the Morphology of Polymer–Fullerene Blends. Advanced Functional Materials 2010, 20 (20), 3519-3529.
    61. Schroeder, B. C.; Kurosawa, T.; Fu, T.; Chiu, Y.-C.; Mun, J.; Wang, G.-J. N.; Gu, X.; Shaw, L.; Kneller, J. W. E.; Kreouzis, T.; Toney, M. F.; Bao, Z., Taming Charge Transport in Semiconducting Polymers with Branched Alkyl Side Chains. Advanced Functional Materials 2017, 27 (34), 1701973.
    62. Son, S. Y.; Kim, Y.; Lee, J.; Lee, G.-Y.; Park, W.-T.; Noh, Y.-Y.; Park, C. E.; Park, T., High-Field-Effect Mobility of Low-Crystallinity Conjugated Polymers with Localized Aggregates. Journal of the American Chemical Society 2016, 138 (26), 8096-8103.
    63. Chabinyc, M. L.; Endicott, F.; Vogt, B. D.; DeLongchamp, D. M.; Lin, E. K.; Wu, Y.; Liu, P.; Ong, B. S., Effects of humidity on unencapsulated poly(thiophene) thin-film transistors. Applied Physics Letters 2006, 88 (11), 113514.
    64. Yan, H.; Chen, Z.; Zheng, Y.; Newman, C.; Quinn, J. R.; Dötz, F.; Kastler, M.; Facchetti, A., A high-mobility electron-transporting polymer for printed transistors. Nature 2009, 457 (7230), 679-686.
    65. Qian, Z.; Cao, Z.; Galuska, L.; Zhang, S.; Xu, J.; Gu, X., Glass Transition Phenomenon for Conjugated Polymers. Macromolecular Chemistry and Physics 2019, 220 (11), 1900062.
    66. Padma, N., Channel length influenced contribution of hole and electron trapping effect to threshold voltage stability in organic field effect transistors. Materials Science in Semiconductor Processing 2015, 39, 384-389.
    67. Salleo, A.; Endicott, F.; Street, R. A., Reversible and irreversible trapping at room temperature in poly(thiophene) thin-film transistors. Applied Physics Letters 2005, 86 (26), 263505.
    68. Hoshino, S.; Yoshida, M.; Uemura, S.; Kodzasa, T.; Takada, N.; Kamata, T.; Yase, K., Influence of moisture on device characteristics of polythiophene-based field-effect transistors. Journal of Applied Physics 2004, 95 (9), 5088-5093.

    無法下載圖示 全文公開日期 2025/07/03 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE